These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12052362)

  • 1. Automatic recognition of alertness and drowsiness from EEG by an artificial neural network.
    Vuckovic A; Radivojevic V; Chen AC; Popovic D
    Med Eng Phys; 2002 Jun; 24(5):349-60. PubMed ID: 12052362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic recognition of alertness level by using wavelet transform and artificial neural network.
    Kiymik MK; Akin M; Subasi A
    J Neurosci Methods; 2004 Oct; 139(2):231-40. PubMed ID: 15488236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection.
    Sriraam N; Padma Shri TK; Maheshwari U
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):797-806. PubMed ID: 27550443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of seizure activity in EEG by an artificial neural network: a preliminary study.
    Pradhan N; Sadasivan PK; Arunodaya GR
    Comput Biomed Res; 1996 Aug; 29(4):303-13. PubMed ID: 8812076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring alert and drowsy states by modeling EEG source nonstationarity.
    Hsu SH; Jung TP
    J Neural Eng; 2017 Oct; 14(5):056012. PubMed ID: 28627505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An algorithm for automatic detection of drowsiness for use in wearable EEG systems.
    Patrick KC; Imtiaz SA; Bowyer S; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3523-3526. PubMed ID: 28269058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection of drowsiness in EEG records based on multimodal analysis.
    Garcés Correa A; Orosco L; Laciar E
    Med Eng Phys; 2014 Feb; 36(2):244-9. PubMed ID: 23972332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A portable device for real time drowsiness detection using novel active dry electrode system.
    Tsai PY; Hu W; Kuo TB; Shyu LY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3775-8. PubMed ID: 19964814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online detection of REM sleep based on the comprehensive evaluation of short adjacent EEG segments by artificial neural networks.
    Grözinger M; Wolf C; Uhl T; Schäffner C; Röschke J
    Prog Neuropsychopharmacol Biol Psychiatry; 1997 Aug; 21(6):951-63. PubMed ID: 9380791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.
    Bascil MS; Tesneli AY; Temurtas F
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):665-76. PubMed ID: 27376723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of epileptiform activities in the EEG using neural network and expert system.
    Park HS; Lee YH; Kim NG; Lee DS; Kim SI
    Stud Health Technol Inform; 1998; 52 Pt 2():1255-9. PubMed ID: 10384661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep scoring using artificial neural networks.
    Ronzhina M; Janoušek O; Kolářová J; Nováková M; Honzík P; Provazník I
    Sleep Med Rev; 2012 Jun; 16(3):251-63. PubMed ID: 22030383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG segmentation for improving automatic CAP detection.
    Mariani S; Grassi A; Mendez MO; Milioli G; Parrino L; Terzano MG; Bianchi AM
    Clin Neurophysiol; 2013 Sep; 124(9):1815-23. PubMed ID: 23643311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical detection of epileptiform discharges (EDs) in the EEG using an artificial neural network: a comparison of raw and parameterized EEG data.
    Webber WR; Litt B; Wilson K; Lesser RP
    Electroencephalogr Clin Neurophysiol; 1994 Sep; 91(3):194-204. PubMed ID: 7522148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude normalization applied to an artificial neural network-based automatic sleep spindle detection system.
    Ventouras EM; Panagi M; Tsekou H; Paparrigopoulos TJ; Ktonas PY
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3240-3. PubMed ID: 25570681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study.
    Ventouras EM; Monoyiou EA; Ktonas PY; Paparrigopoulos T; Dikeos DG; Uzunoglu NK; Soldatos CR
    Comput Methods Programs Biomed; 2005 Jun; 78(3):191-207. PubMed ID: 15899305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative electro-oculography and electroencephalography as indices of alertness.
    Hyoki K; Shigeta M; Tsuno N; Kawamuro Y; Kinoshita T
    Electroencephalogr Clin Neurophysiol; 1998 Mar; 106(3):213-9. PubMed ID: 9743279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.