BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 12052394)

  • 21. A simple model of force generation by skeletal muscle during dynamic isometric contractions.
    Bobet J; Stein RB
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1010-6. PubMed ID: 9691575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries.
    Ding J; Lee SC; Johnston TE; Wexler AS; Scott WB; Binder-Macleod SA
    Muscle Nerve; 2005 Jun; 31(6):702-12. PubMed ID: 15742371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuromuscular adaptations associated with knee joint angle-specific force change.
    Noorkõiv M; Nosaka K; Blazevich AJ
    Med Sci Sports Exerc; 2014 Aug; 46(8):1525-37. PubMed ID: 24504427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint angle and contraction mode influence quadriceps motor neuron pool excitability.
    Pietrosimone BG; Hammill RR; Saliba EN; Hertel J; Ingersoll CD
    Am J Phys Med Rehabil; 2008 Feb; 87(2):100-8. PubMed ID: 17912136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
    Saito A; Akima H
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1406-12. PubMed ID: 24075525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies that improve human skeletal muscle performance during repetitive, non-isometric contractions.
    Kebaetse MB; Binder-Macleod SA
    Pflugers Arch; 2004 Aug; 448(5):525-32. PubMed ID: 15168123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors.
    Doguet V; Nosaka K; Guével A; Thickbroom G; Ishimura K; Jubeau M
    Exp Physiol; 2017 Nov; 102(11):1513-1523. PubMed ID: 28796385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Constant and Doublet Frequency Electrical Stimulation Patterns on Force Production of Knee Extensor Muscles.
    Cometti C; Babault N; Deley G
    PLoS One; 2016; 11(5):e0155429. PubMed ID: 27167066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanics of the heel-raise test performed on an incline in two knee flexion positions.
    Hébert-Losier K; Holmberg HC
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):664-71. PubMed ID: 23810663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Twitch potentiation is greater after a fatiguing submaximal isometric contraction performed at short vs. long quadriceps muscle length.
    Place N; Maffiuletti NA; Ballay Y; Lepers R
    J Appl Physiol (1985); 2005 Feb; 98(2):429-36. PubMed ID: 15475602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of activation frequency and force on low-frequency fatigue in human skeletal muscle.
    Binder-Macleod SA; Russ DW
    J Appl Physiol (1985); 1999 Apr; 86(4):1337-46. PubMed ID: 10194220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low frequency fatigue of quadriceps muscle after sustained maximum voluntary contractions.
    Skurvydas A; Mamkus G; Stanislovaitis A; Mickeviciene D; Bulotiene D; Masiulis N
    Medicina (Kaunas); 2003; 39(11):1094-9. PubMed ID: 14646464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of stretching on agonist-antagonist muscle activity and muscle force output during single and multiple joint isometric contractions.
    McBride JM; Deane R; Nimphius S
    Scand J Med Sci Sports; 2007 Feb; 17(1):54-60. PubMed ID: 17305940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion.
    Paternoster FK; Seiberl W; Hahn D; Schwirtz A
    J Biomech; 2016 Mar; 49(5):773-779. PubMed ID: 26903409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Twitch potentiation induced by stimulated and voluntary isometric contractions at various torque levels in human knee extensor muscles.
    Miyamoto N; Yanai T; Kawakami Y
    Muscle Nerve; 2011 Mar; 43(3):360-6. PubMed ID: 21321952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains.
    Ding J; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Mar; 88(3):917-25. PubMed ID: 10710386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration.
    Marion MS; Wexler AS; Hull ML
    J Neuroeng Rehabil; 2013 Feb; 10():13. PubMed ID: 23374142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.
    Krueger E; Popović-Maneski L; Nohama P
    Artif Organs; 2018 Feb; 42(2):208-218. PubMed ID: 28762503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue responses of human triceps surae muscles during repetitive maximal isometric contractions.
    Kawakami Y; Amemiya K; Kanehisa H; Ikegawa S; Fukunaga T
    J Appl Physiol (1985); 2000 Jun; 88(6):1969-75. PubMed ID: 10846007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of speed and distance of muscle shortening on force depression during voluntary contractions.
    Lee HD; Suter E; Herzog W
    J Biomech; 2000 Aug; 33(8):917-23. PubMed ID: 10828321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.