These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 12052395)

  • 21. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastin fibers display a versatile microfibril network in articular cartilage depending on the mechanical microenvironments.
    He B; Wu JP; Chen HH; Kirk TB; Xu J
    J Orthop Res; 2013 Sep; 31(9):1345-53. PubMed ID: 23649803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element modeling of soft tissues: material models, tissue interaction and challenges.
    Freutel M; Schmidt H; Dürselen L; Ignatius A; Galbusera F
    Clin Biomech (Bristol); 2014 Apr; 29(4):363-72. PubMed ID: 24529470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications.
    Pierce DM; Ricken T; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1344-61. PubMed ID: 22764882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers.
    Ateshian GA; Wang H
    J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The micromechanics of the superficial zone of articular cartilage.
    Mansfield JC; Bell JS; Winlove CP
    Osteoarthritis Cartilage; 2015 Oct; 23(10):1806-16. PubMed ID: 26050867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage.
    Jones WR; Ting-Beall HP; Lee GM; Kelley SS; Hochmuth RM; Guilak F
    J Biomech; 1999 Feb; 32(2):119-27. PubMed ID: 10052916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alteration of viscoelastic properties is associated with a change in cytoskeleton components of ageing chondrocytes from rabbit knee articular cartilage.
    Duan W; Wei L; Zhang J; Hao Y; Li C; Li H; Li Q; Zhang Q; Chen W; Wei X
    Mol Cell Biomech; 2011 Dec; 8(4):253-74. PubMed ID: 22338706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress.
    Krishnan R; Park S; Eckstein F; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):569-77. PubMed ID: 14618915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis.
    Alexopoulos LG; Haider MA; Vail TP; Guilak F
    J Biomech Eng; 2003 Jun; 125(3):323-33. PubMed ID: 12929236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deformation of chondrocytes in articular cartilage under compressive load: a morphological study.
    Kääb MJ; Richards RG; Ito K; ap Gwynn I; Nötzli HP
    Cells Tissues Organs; 2003; 175(3):133-9. PubMed ID: 14663156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes.
    Trickey WR; Vail TP; Guilak F
    J Orthop Res; 2004 Jan; 22(1):131-9. PubMed ID: 14656671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK
    J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression.
    Guo H; Torzilli PA
    Acta Biomater; 2016 Jan; 29():170-179. PubMed ID: 26525115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site-specific cell-tissue interactions in rabbit knee joint articular cartilage.
    Ronkainen AP; Fick JM; Herzog W; Korhonen RK
    J Biomech; 2016 Sep; 49(13):2882-2890. PubMed ID: 27435567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1999 Jun; 32(6):563-72. PubMed ID: 10332619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.