These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12052495)

  • 1. Interaction of the IP(3)-Ca(2+) and the FGF-MAPK signaling pathways in the Xenopus laevis embryo: a qualitative approach to the mesodermal induction problem.
    Díaz J; Baier G; Martínez-Mekler G; Pastor N
    Biophys Chem; 2002 May; 97(1):55-72. PubMed ID: 12052495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the IP3-Ca2+ and MAPK signaling systems in the Xenopus blastomere: a possible frequency encoding mechanism for the control of the Xbra gene expression.
    Díaz J; Martínez-Mekler G
    Bull Math Biol; 2005 May; 67(3):433-65. PubMed ID: 15820737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL; Grainger RM
    Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning.
    Nutt SL; Dingwell KS; Holt CE; Amaya E
    Genes Dev; 2001 May; 15(9):1152-66. PubMed ID: 11331610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling.
    Böttcher RT; Pollet N; Delius H; Niehrs C
    Nat Cell Biol; 2004 Jan; 6(1):38-44. PubMed ID: 14688794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis.
    Suzuki A; Yoshida H; van Heeringen SJ; Takebayashi-Suzuki K; Veenstra GJC; Taira M
    Dev Biol; 2017 Jun; 426(2):336-359. PubMed ID: 27692744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus.
    Fletcher RB; Harland RM
    Dev Dyn; 2008 May; 237(5):1243-54. PubMed ID: 18386826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of a spatial distribution of IP3 receptors in the Ca2+ dynamics of the Xenopus embryo at the mid-blastula transition stage.
    Díaz J; Pastor N; Martínez-Mekler G
    Dev Dyn; 2005 Feb; 232(2):301-12. PubMed ID: 15614769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosstalk between the phosphatidylinositol cycle and MAP kinase signaling pathways in Xenopus mesoderm induction.
    Rose L; Busa WB
    Dev Growth Differ; 1998 Apr; 40(2):231-41. PubMed ID: 9572365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis.
    Ribisi S; Mariani FV; Aamar E; Lamb TM; Frank D; Harland RM
    Dev Biol; 2000 Nov; 227(1):183-96. PubMed ID: 11076686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A POU protein regulates mesodermal competence to FGF in Xenopus.
    Henig C; Elias S; Frank D
    Mech Dev; 1998 Feb; 71(1-2):131-42. PubMed ID: 9507090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm.
    Kumano G; Ezal C; Smith WC
    Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.
    Akagi K; Kyun Park E; Mood K; Daar IO
    Dev Dyn; 2002 Mar; 223(2):216-28. PubMed ID: 11836786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct activation of phospholipase C-gamma by fibroblast growth factor receptor is not required for mesoderm induction in Xenopus animal caps.
    Muslin AJ; Peters KG; Williams LT
    Mol Cell Biol; 1994 May; 14(5):3006-12. PubMed ID: 8164656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF signaling restricts the primary blood islands to ventral mesoderm.
    Kumano G; Smith WC
    Dev Biol; 2000 Dec; 228(2):304-14. PubMed ID: 11112331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-molecular-weight protein tyrosine phosphatase is a positive component of the fibroblast growth factor receptor signaling pathway.
    Park EK; Warner N; Mood K; Pawson T; Daar IO
    Mol Cell Biol; 2002 May; 22(10):3404-14. PubMed ID: 11971972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis.
    Kume S; Muto A; Okano H; Mikoshiba K
    Mech Dev; 1997 Aug; 66(1-2):157-68. PubMed ID: 9376319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in Xenopus embryos.
    Kume S; Muto A; Inoue T; Suga K; Okano H; Mikoshiba K
    Science; 1997 Dec; 278(5345):1940-3. PubMed ID: 9395395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos.
    Hardcastle Z; Chalmers AD; Papalopulu N
    Curr Biol; 2000 Nov; 10(23):1511-4. PubMed ID: 11114518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoderm induction in Xenopus caused by activation of MAP kinase.
    Umbhauer M; Marshall CJ; Mason CS; Old RW; Smith JC
    Nature; 1995 Jul; 376(6535):58-62. PubMed ID: 7541116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.