BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12052552)

  • 1. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA.
    Seeliger S; Janssen PH; Schink B
    FEMS Microbiol Lett; 2002 May; 211(1):65-70. PubMed ID: 12052552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy conservation by succinate decarboxylation in Veillonella parvula.
    Denger K; Schink B
    J Gen Microbiol; 1992 May; 138(5):967-71. PubMed ID: 1645132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate reduction in Clostridium propionicum. Purification and properties of lactyl-CoA dehydratase.
    Kuchta RD; Abeles RH
    J Biol Chem; 1985 Oct; 260(24):13181-9. PubMed ID: 4055736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway.
    Thompson TE; Zeikus JG
    J Bacteriol; 1988 Sep; 170(9):3996-4000. PubMed ID: 3410821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-, 3-, or 4-hydroxybutyrate.
    Dörner C; Schink B
    Arch Microbiol; 1990; 154(4):342-8. PubMed ID: 2244786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence and possible function of methylmalonyl CoA mutase and propionyl CoA carboxylase in Spirometra mansonoides.
    Tkachuck RD; Saz HJ; Weinstein PP; Finnegan K; Mueller JF
    J Parasitol; 1977 Oct; 63(5):769-74. PubMed ID: 21232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the dehydration of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum.
    Schweiger G; Buckel W
    FEBS Lett; 1984 Jun; 171(1):79-84. PubMed ID: 6586495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate metabolism in Propionibacterium pentosaceum growing with nitrate or oxygen as hydrogen acceptor.
    Gent-Ruijters ML; Meijere FA; Vries W; Stouthamer AH
    Antonie Van Leeuwenhoek; 1976; 42(3):217-28. PubMed ID: 1086638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum.
    Benito-Vaquerizo S; Parera Olm I; de Vroet T; Schaap PJ; Sousa DZ; Martins Dos Santos VAP; Suarez-Diez M
    Microb Cell Fact; 2022 Jun; 21(1):116. PubMed ID: 35710409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium.
    Melville SB; Michel TA; Macy JM
    J Bacteriol; 1988 Nov; 170(11):5298-304. PubMed ID: 3141385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial steps in the fermentation of 3-hydroxybenzoate by Sporotomaculum hydroxybenzoicum.
    Müller JA; Schink B
    Arch Microbiol; 2000 Apr; 173(4):288-95. PubMed ID: 10816048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway.
    Tholozan JL; Touzel JP; Samain E; Grivet JP; Prensier G; Albagnac G
    Arch Microbiol; 1992; 157(3):249-57. PubMed ID: 1510558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.
    Hwang MH; Jang NJ; Hyun SH; Kim IS
    J Biotechnol; 2004 Aug; 111(3):297-309. PubMed ID: 15246666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium.
    Appl Microbiol; 1975 Dec; 30(6):916-21. PubMed ID: 174490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1977 Dec; 34(6):756-9. PubMed ID: 596874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Investigation of the catabolism of acetate and peptides in the new anaerobic thermophilic bacterium Caldithrix abyssi].
    Fedorov DV; Podkopaeva DA; Miroshnichenko ML; Bonch-Osmolovskaia EA; Lebedinskiĭ AV; Grabovich MIu
    Mikrobiologiia; 2006; 75(2):154-9. PubMed ID: 16758861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA:Succinate CoA transferase.
    Wang Z; Ammar EM; Zhang A; Wang L; Lin M; Yang ST
    Metab Eng; 2015 Jan; 27():46-56. PubMed ID: 25447642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: changes induced by discontinuous or low-rate feed supply.
    Cohen A; Distel B; van Deursen A; Breure AM; van Andel JG
    Antonie Van Leeuwenhoek; 1985; 51(2):179-92. PubMed ID: 3929685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.
    Kim J; Hetzel M; Boiangiu CD; Buckel W
    FEMS Microbiol Rev; 2004 Oct; 28(4):455-68. PubMed ID: 15374661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate metabolism by Veillonella parvula.
    Ng SK; Hamilton IR
    J Bacteriol; 1971 Mar; 105(3):999-1005. PubMed ID: 4323300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.