These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 12053013)

  • 1. Inhibitory effects of protein kinase C on inwardly rectifying K+- and ATP-sensitive K+ channel-mediated responses of the basilar artery.
    Chrissobolis S; Sobey CG
    Stroke; 2002 Jun; 33(6):1692-7. PubMed ID: 12053013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of gender on K+-induced cerebral vasodilatation.
    Chrissobolis S; Sobey CG
    Stroke; 2004 Mar; 35(3):747-52. PubMed ID: 14764930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of subarachnoid hemorrhage on cerebral vasodilatation in response to activation of ATP-sensitive K+ channels in chronically hypertensive rats.
    Sobey CG; Heistad DD; Faraci FM
    Stroke; 1997 Feb; 28(2):392-6; discussion 396-7. PubMed ID: 9040696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of inwardly rectifying K(+) channels in K(+)-induced cerebral vasodilatation in vivo.
    Chrissobolis S; Ziogas J; Chu Y; Faraci FM; Sobey CG
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2704-12. PubMed ID: 11087224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG; Faraci FM
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive potassium channels in the basilar artery during chronic hypertension.
    Kitazono T; Heistad DD; Faraci FM
    Hypertension; 1993 Nov; 22(5):677-81. PubMed ID: 8225527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of K(ATP)-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression.
    Jansen-Olesen I; Mortensen CH; El-Bariaki N; Ploug KB
    Eur J Pharmacol; 2005 Oct; 523(1-3):109-18. PubMed ID: 16226739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels.
    Miura H; Wachtel RE; Loberiza FR; Saito T; Miura M; Nicolosi AC; Gutterman DD
    Circ Res; 2003 Feb; 92(2):151-8. PubMed ID: 12574142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal NO mediates cerebral vasodilator responses to K+ in hypertensive rats.
    Chrissobolis S; Ziogas J; Anderson CR; Chu Y; Faraci FM; Sobey CG
    Hypertension; 2002 Apr; 39(4):880-5. PubMed ID: 11967243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide.
    Sobey CG; Faraci FM
    Br J Pharmacol; 1999 Mar; 126(6):1437-43. PubMed ID: 10217538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of P1060 and aprikalim on whole-cell currents in rat portal vein; inhibition by glibenclamide and phentolamine.
    Ibbotson T; Edwards G; Noack T; Weston AH
    Br J Pharmacol; 1993 Apr; 108(4):991-8. PubMed ID: 8485637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo.
    Santa N; Kitazono T; Ago T; Ooboshi H; Kamouchi M; Wakisaka M; Ibayashi S; Iida M
    Stroke; 2003 May; 34(5):1276-80. PubMed ID: 12677015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ATP-sensitive potassium channels in the basilar artery.
    Faraci FM; Heistad DD
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H8-13. PubMed ID: 8430866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective effects of subarachnoid hemorrhage on cerebral vascular responses to 4-aminopyridine in rats.
    Quan L; Sobey CG
    Stroke; 2000 Oct; 31(10):2460-5. PubMed ID: 11022080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Levosimendan Relaxes Thoracic Aortic Smooth Muscle in Mice by Inhibiting PKC and Activating Inwardly Rectifying Potassium Channels.
    Yang CH; Qiu HQ; Wang C; Tang YT; Zhang CR; Fan YY; Jiao XY
    J Cardiovasc Pharmacol; 2024 May; 83(5):474-481. PubMed ID: 38113918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasopressin-induced protein kinase C-dependent superoxide generation contributes to atp-sensitive potassium channel but not calcium-sensitive potassium channel function impairment after brain injury.
    Armstead WM
    Stroke; 2001 Jun; 32(6):1408-14. PubMed ID: 11387506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase C modulation of recombinant ATP-sensitive K(+) channels composed of Kir6.1 and/or Kir6.2 expressed with SUR2B.
    Thorneloe KS; Maruyama Y; Malcolm AT; Light PE; Walsh MP; Cole WC
    J Physiol; 2002 May; 541(Pt 1):65-80. PubMed ID: 12015420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aprikalim reduces the Na+-Ca2+ exchange outward current enhanced by hyperkalemia in rat ventricular myocytes.
    Li HY; Wu S; He GW; Wong TM
    Ann Thorac Surg; 2002 Apr; 73(4):1253-9; discussion 1259-60. PubMed ID: 11996269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that estrogen suppresses rho-kinase function in the cerebral circulation in vivo.
    Chrissobolis S; Budzyn K; Marley PD; Sobey CG
    Stroke; 2004 Sep; 35(9):2200-5. PubMed ID: 15256679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin II inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C.
    Kubo M; Quayle JM; Standen NB
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):489-96. PubMed ID: 9379406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.