These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12054044)

  • 21. [Radiation doses in the population of the coastal area of the Kakhovsk Water Reservoir].
    Kostenetskiĭ MI; Gribinenko GT; Kravtsova LS; Ryzhova GL; Khripko ZA
    Gig Sanit; 1998; (3):26-8. PubMed ID: 9662887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Winter transport of Chernobyl radionuclides from a montane catchment to an ice-covered lake.
    Brittain JE; Bjørnstad HE; Salbu B; Oughton DH
    Analyst; 1992 Mar; 117(3):515-9. PubMed ID: 1580392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling the long-term behaviour of radiocaesium and radiostrontium in two Italian lakes.
    Monte L; Grimani C; Desideri D; Angeli G
    J Environ Radioact; 2005; 80(1):105-23. PubMed ID: 15653190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liming as a method to remedy lakes contaminated by radiostrontium.
    Håkanson L
    J Environ Radioact; 2003; 65(1):47-75. PubMed ID: 12683728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.
    Kinouchi T; Yoshimura K; Omata T
    J Environ Radioact; 2015 Jan; 139():407-415. PubMed ID: 25131841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulation of accident-derived radiocesium in lake and coastal sediments at 300-700 km distance from Fukushima area.
    Ochiai S; Miyata Y; Nagao S; Yamamoto M; Murakami T; Nishimura S; Itono T; Suzuki T; Hamataka K; Kawano Y; Hamajima Y; Kashiwaya K
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):365-9. PubMed ID: 25953793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translocation studies of 137Cs and 90Sr in bean plants (Phaseolus vulgaris): simulation of fallout.
    Macacini JF; De Nadai Fernandes EA; Taddei MH
    Environ Pollut; 2002; 120(1):151-5. PubMed ID: 12199462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Specific Features of Radioactive Pollution of Soils of Catchment Areas of Lake Shablish (Distant Zone of the East Ural Radioactive Trace)].
    Deryagin VV; Levina SG; Sutyagin AA; Parfilova NS
    Radiats Biol Radioecol; 2015; 55(6):655-66. PubMed ID: 26964351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [90Sr and 137Cs in higher aquatic plants of some water basins on the East-Urals Radioactive Trace: species features of radionuclide concentration].
    Levina SG; Zenerova ZP; Shibkova DZ; Deriagin VV; Popova IIa
    Radiats Biol Radioecol; 2006; 46(5):575-82. PubMed ID: 17133724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Prognosis of dynamics and risk of exceeding permissible levels of 137Cs and 90Sr contents in fish in the Kiev Reservoir at the late phase of the Chernobyl accident].
    Homutinin IuV; Kashparov VA; Kuz'menko AV; Pavliuchenko VV
    Radiats Biol Radioecol; 2013; 53(4):411-27. PubMed ID: 25427374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regional-scale application of the decision support system MOIRA-PLUS: an example of assessment of the radiological impact of the Chernobyl accident on the fresh water ecosystem in Italy.
    Monte L
    J Environ Radioact; 2011 Feb; 102(2):73-83. PubMed ID: 21030118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lake fish as the main contributor of internal dose to lakeshore residents in the Chernobyl contaminated area.
    Travnikova IG; Bazjukin AN; Bruk GJ; Shutov VN; Balonov MI; Skuterud L; Mehli H; Strand P
    J Environ Radioact; 2004; 77(1):63-75. PubMed ID: 15297041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physicochemical forms of (90)Sr and (137)Cs in components of Glyboke Lake ecosystem in the Chornobyl exclusion zone.
    Ganzha Ch; Gudkov D; Ganzha D; Klenus V; Nazarov A
    J Environ Radioact; 2014 Jan; 127():176-81. PubMed ID: 23652206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of state-of-the-art models for predicting the remobilisation of radionuclides following the flooding of heavily contaminated areas: the case of Pripyat River floodplain.
    Monte L; Periañez R; Kivva S; Laptev G; Angeli G; Barros H; Zheleznyak M
    J Environ Radioact; 2006; 88(3):267-88. PubMed ID: 16644072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling the transport of radionuclides from land to water.
    Håkanson L
    J Environ Radioact; 2004; 73(3):267-87. PubMed ID: 15050360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retrospective dosimetry related to chronic environmental exposure.
    Degteva MO; Kozheurov VP; Tolstykh EI
    Radiat Prot Dosimetry; 1998; 79(1-4):155-60. PubMed ID: 11543360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer and behaviour of 137Cs in two Finnish lakes and their catchments.
    Saxén R; Ilus E
    Sci Total Environ; 2008 May; 394(2-3):349-60. PubMed ID: 18313103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 90Sr and 137Cs in pilchards from the Adriatic Sea.
    Franić Z; Lokobauer N
    Arh Hig Rada Toksikol; 1993 Dec; 44(4):293-301. PubMed ID: 8192602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of 137Cs fallout from the Chernobyl accident in a forest soil and its impact on Alpine Lake sediments, Mercantour Massif, S.E. France.
    Rezzoug S; Michel H; Fernex F; Barci-Funel G; Barci V
    J Environ Radioact; 2006; 85(2-3):369-79. PubMed ID: 16102877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 90Sr, 137Cs and (239,240)Pu concentration surface water time series in the Pacific and Indian Oceans--WOMARS results.
    Povinec PP; Aarkrog A; Buesseler KO; Delfanti R; Hirose K; Hong GH; Ito T; Livingston HD; Nies H; Noshkin VE; Shima S; Togawa O
    J Environ Radioact; 2005; 81(1):63-87. PubMed ID: 15748662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.