These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12054045)

  • 1. Foliar and root uptake of 134Cs, 85Sr and 65Zn in processing tomato plants (Lycopersicon esculentum Mill.).
    Brambilla M; Fortunati P; Carini F
    J Environ Radioact; 2002; 60(3):351-63. PubMed ID: 12054045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foliar and soil uptake of 134Cs and 85Sr by grape vines.
    Carini F; Lombi E
    Sci Total Environ; 1997 Nov; 207(2-3):157-64. PubMed ID: 9447745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foliar uptake of 134Cs and 85Sr in strawberry as function by leaf age.
    Fortunati P; Brambilla M; Speroni F; Carini F
    J Environ Radioact; 2004; 71(2):187-99. PubMed ID: 14567952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 134Cs and 85Sr in fruit plants following wet aerial deposition.
    Carini F; Anguissola Scotti I; D'Alessandro PG
    Health Phys; 1999 Nov; 77(5):520-9. PubMed ID: 10524505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cesium-134 and strontium-85 in strawberry plants following wet aerial deposition.
    Carini F; Brambilla M; Mitchell N; Ould-Dada Z
    J Environ Qual; 2003; 32(6):2254-64. PubMed ID: 14674549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiocaesium and radiostrontium uptake by turnips and broad beans via leaf and root absorption.
    Baeza A; Paniagua JM; Rufo M; Sterling A; Barandica J
    Appl Radiat Isot; 1999 Mar; 50(3):467-74. PubMed ID: 10070709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventomod: a dynamic model for leaf to fruit transfer of radionuclides in processing tomato plants (Lycopersicon esculentum Mill.) following a direct contamination event.
    Brambilla M; Strebl F; Carini F; Gerzabek M
    J Environ Radioact; 2003; 65(3):309-28. PubMed ID: 12573863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radionuclides in fruit systems: model prediction-experimental data intercomparison study.
    Ould-Dada Z; Carini F; Eged K; Kis Z; Linkov I; Mitchell NG; Mourlon C; Robles B; Sweeck L; Venter A
    Sci Total Environ; 2006 Aug; 366(2-3):514-24. PubMed ID: 16413598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of 90Sr and 137Cs uptake in plants via three pathways at two Chernobyl-contaminated sites.
    Malek MA; Hinton TG; Webb SB
    J Environ Radioact; 2002; 58(2-3):129-41. PubMed ID: 11814162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiocaesium and radiostrontium uptake by fruit bodies of Pleurotus eryngii via mycelium, soil and aerial absorption.
    Baeza A; Guillén J; Paniagua JM; Hernández S; Martín JL; Díez J; Manjón JL; Moreno G
    Appl Radiat Isot; 2000 Sep; 53(3):455-62. PubMed ID: 10972153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant uptake of 134Cs in relation to soil properties and time.
    Massas I; Skarlou V; Haidouti C
    J Environ Radioact; 2002; 59(3):245-55. PubMed ID: 11954716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of 137Cs and 60Co from irrigation water to a soil-tomato plant system.
    Sabbares C; Stellato L; Cotrufo MF; D'Onofrio A; Ermice A; Terrasi F; Alfieri S
    J Environ Radioact; 2002; 61(1):21-31. PubMed ID: 12113503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A validation study for the transport of 134Cs to strawberry.
    Oncsik MB; Eged K; Kis Z; Kanyár B
    J Environ Radioact; 2002; 61(3):319-29. PubMed ID: 14689995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model testing study for the transfer of radioactivity to fruit.
    Ould-Dada Z; Carini F; Mitchell NG
    J Environ Radioact; 2003; 70(3):207-21. PubMed ID: 12957551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention and translocation of foliar applied 239,240Pu and 241Am, as compared to 137Cs and 85Sr, into bean plants (Phaseolus vulgaris).
    Henner P; Colle C; Morello M
    J Environ Radioact; 2005; 83(2):213-29. PubMed ID: 15936122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil-water distribution coefficients and plant transfer factors for (134)Cs, (85)Sr and (65)Zn under field conditions in tropical Australia.
    Twining JR; Payne TE; Itakura T
    J Environ Radioact; 2004; 71(1):71-87. PubMed ID: 14557038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant uptake and downward migration of 85Sr and 137Cs after their deposition on to flooded rice fields: lysimeter experiments with and without the addition of KCl and lime.
    Choi YH; Lim KM; Choi HJ; Choi GS; Lee HS; Lee CW
    J Environ Radioact; 2005; 78(1):35-49. PubMed ID: 15465178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of 134Cs in the shoots of Amaranthus tricolor and Amaranthus cruentus.
    Tang S; Chen Z; Li H; Zheng J
    Environ Pollut; 2003; 125(3):305-12. PubMed ID: 12826408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating soil structure and root distribution into plant uptake models for radionuclides: toward a more physically based transfer model.
    Albrecht A; Schultze U; Liedgens M; Flühler H; Frossard E
    J Environ Radioact; 2002; 59(3):329-50. PubMed ID: 11954721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent transfer of 137Cs, 85Sr and 65Zn to earthworms in highly contaminated soils.
    Keum DK; Jun I; Lim KM; Choi YH; Howard BJ
    J Environ Radioact; 2013 Dec; 126():427-33. PubMed ID: 22948029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.