BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12054166)

  • 1. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism.
    De Beur SM; Finnegan RB; Vassiliadis J; Cook B; Barberio D; Estes S; Manavalan P; Petroziello J; Madden SL; Cho JY; Kumar R; Levine MA; Schiavi SC
    J Bone Miner Res; 2002 Jun; 17(6):1102-10. PubMed ID: 12054166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia.
    Rowe PS; de Zoysa PA; Dong R; Wang HR; White KE; Econs MJ; Oudet CL
    Genomics; 2000 Jul; 67(1):54-68. PubMed ID: 10945470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The levels of somatostatin receptors in causative tumors of oncogenic osteomalacia are insufficient for their agonist to normalize serum phosphate levels.
    Ishii A; Imanishi Y; Kobayashi K; Hashimoto J; Ueda T; Miyauchi A; Koyano HM; Kaji H; Saito T; Oba K; Komatsu Y; Kurajoh M; Nagata Y; Goto H; Wakasa K; Sugimoto T; Miki T; Inaba M; Nishizawa Y
    Calcif Tissue Int; 2010 Jun; 86(6):455-62. PubMed ID: 20458578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia.
    Bahrami A; Weiss SW; Montgomery E; Horvai AE; Jin L; Inwards CY; Folpe AL
    Am J Surg Pathol; 2009 Sep; 33(9):1348-54. PubMed ID: 19609206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis.
    Larsson T; Marsell R; Schipani E; Ohlsson C; Ljunggren O; Tenenhouse HS; Jüppner H; Jonsson KB
    Endocrinology; 2004 Jul; 145(7):3087-94. PubMed ID: 14988389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix extracellular phosphoglycoprotein is expressed in causative tumors of oncogenic osteomalacia.
    Imanishi Y; Hashimoto J; Ando W; Kobayashi K; Ueda T; Nagata Y; Miyauchi A; Koyano HM; Kaji H; Saito T; Oba K; Komatsu Y; Morioka T; Mori K; Miki T; Inaba M
    J Bone Miner Metab; 2012 Jan; 30(1):93-9. PubMed ID: 21739089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteomalacia due to 1alpha,25-dihydroxycholecalciferol deficiency. Association with a giant cell tumor of bone.
    Drezner MK; Feinglos MN
    J Clin Invest; 1977 Nov; 60(5):1046-53. PubMed ID: 908749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging role of a phosphatonin in mineral homeostasis and its derangements.
    Bielesz B
    Eur J Clin Invest; 2006 Aug; 36 Suppl 2():34-42. PubMed ID: 16884396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracts from tumors causing oncogenic osteomalacia inhibit phosphate uptake in opossum kidney cells.
    Jonsson KB; Mannstadt M; Miyauchi A; Yang IM; Stein G; Ljunggren O ; Jüppner H
    J Endocrinol; 2001 Jun; 169(3):613-20. PubMed ID: 11375132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone.
    Argiro L; Desbarats M; Glorieux FH; Ecarot B
    Genomics; 2001 Jun; 74(3):342-51. PubMed ID: 11414762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a role for 1,25-dihydroxyvitamin D3 in the pathogenesis and treatment of X-linked hypophosphatemic rickets and osteomalacia.
    Drezner MK; Lyles KW; Haussler MR; Harrelson JM
    J Clin Invest; 1980 Nov; 66(5):1020-32. PubMed ID: 6253520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone as a source of FGF23: regulation by phosphate?
    Mirams M; Robinson BG; Mason RS; Nelson AE
    Bone; 2004 Nov; 35(5):1192-9. PubMed ID: 15542045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium, phosphorus, and bone metabolism in the fetus and newborn.
    Kovacs CS
    Early Hum Dev; 2015 Nov; 91(11):623-8. PubMed ID: 26363942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease.
    Stubbs J; Liu S; Quarles LD
    Semin Dial; 2007; 20(4):302-8. PubMed ID: 17635819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogenic osteomalacia caused by an occult paranasal sinus tumor.
    Okamiya T; Takahashi K; Kamada H; Hirato J; Motoi T; Fukumoto S; Chikamatsu K
    Auris Nasus Larynx; 2015 Apr; 42(2):167-9. PubMed ID: 25682388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of long-term therapy with calcitriol in patients with moderate renal failure.
    Healy MD; Malluche HH; Goldstein DA; Singer FR; Massry SG
    Arch Intern Med; 1980 Aug; 140(8):1030-3. PubMed ID: 6893118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor expression studies indicate that HEM-1 is unlikely to be the active factor in oncogenic osteomalacia.
    Nelson AE; Mason RS; Hogan JJ; Diamond T; Robinson BG
    Bone; 1998 Dec; 23(6):549-53. PubMed ID: 9855464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tumor-induced osteomalacia on the bone mineralization process.
    Nawrot-Wawrzyniak K; Varga F; Nader A; Roschger P; Sieghart S; Zwettler E; Roetzer KM; Lang S; Weinkamer R; Klaushofer K; Fratzl-Zelman N
    Calcif Tissue Int; 2009 Apr; 84(4):313-23. PubMed ID: 19219382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical detection of FGF-23 protein in tumors that cause oncogenic osteomalacia.
    Larsson T; Zahradnik R; Lavigne J; Ljunggren O; Jüppner H; Jonsson KB
    Eur J Endocrinol; 2003 Feb; 148(2):269-76. PubMed ID: 12590648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic studies in a patient with idiopathic hypophosphatemic osteomalacia.
    Weiss M; Schechter P; Bab I; Mekhmandarov S; Bank H; Eisenstein Z
    Isr J Med Sci; 1988 Jan; 24(1):46-50. PubMed ID: 3346150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.