BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12054291)

  • 1. Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record.
    Ciampaglio CN
    Evol Dev; 2002; 4(3):170-88. PubMed ID: 12054291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring changes in articulate brachiopod morphology before and after the Permian mass extinction event: do developmental constraints limit morphological innovation?
    Ciampaglio CN
    Evol Dev; 2004; 6(4):260-74. PubMed ID: 15230966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oldest post-Palaeozoic Crinoid and Permian-Triassic origins of the Articulata (Echinodermata).
    Oji T; Twitchett RJ
    Zoolog Sci; 2015 Apr; 32(2):211-5. PubMed ID: 25826072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and Development at the Origin of a Phylum.
    Deline B; Thompson JR; Smith NS; Zamora S; Rahman IA; Sheffield SL; Ausich WI; Kammer TW; Sumrall CD
    Curr Biol; 2020 May; 30(9):1672-1679.e3. PubMed ID: 32197083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixed, free, and fixed: the fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian-Triassic origin.
    Rouse GW; Jermiin LS; Wilson NG; Eeckhaut I; Lanterbecq D; Oji T; Young CM; Browning T; Cisternas P; Helgen LE; Stuckey M; Messing CG
    Mol Phylogenet Evol; 2013 Jan; 66(1):161-81. PubMed ID: 23063883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A test of Simpson's "rule of the survival of the relatively unspecialized" using fossil crinoids.
    Liow LH
    Am Nat; 2004 Oct; 164(4):431-43. PubMed ID: 15459876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny of Comatulidae (Echinodermata: Crinoidea: Comatulida): a new classification and an assessment of morphological characters for crinoid taxonomy.
    Summers MM; Messing CG; Rouse GW
    Mol Phylogenet Evol; 2014 Nov; 80():319-39. PubMed ID: 25065346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction.
    Bapst DW; Bullock PC; Melchin MJ; Sheets HD; Mitchell CE
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3428-33. PubMed ID: 22331867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?
    Leung TL
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):410-430. PubMed ID: 26538112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.
    Hopkins MJ; Smith AB
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3758-63. PubMed ID: 25713369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Morphological Phylogeny of the Ophiuroidea (Echinodermata) Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics.
    Thuy B; Stöhr S
    PLoS One; 2016; 11(5):e0156140. PubMed ID: 27227685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution.
    Baumiller TK; Salamon MA; Gorzelak P; Mooi R; Messing CG; Gahn FJ
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5893-6. PubMed ID: 20231453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clades reach highest morphological disparity early in their evolution.
    Hughes M; Gerber S; Wills MA
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13875-9. PubMed ID: 23884651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectivity and the effect of mass extinctions on disparity and functional ecology.
    Cole SR; Hopkins MJ
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33952521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early bursts of disparity and the reorganization of character integration.
    Wagner PJ
    Proc Biol Sci; 2018 Nov; 285(1891):. PubMed ID: 30429302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relationship between the macroevolutionary trajectories of morphological integration and morphological disparity.
    Gerber S
    PLoS One; 2013; 8(5):e63913. PubMed ID: 23691115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets.
    Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE
    Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.
    Muscente AD; Prabhu A; Zhong H; Eleish A; Meyer MB; Fox P; Hazen RM; Knoll AH
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5217-5222. PubMed ID: 29686079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae.
    Hopkins MJ
    J Evol Biol; 2013 Aug; 26(8):1665-76. PubMed ID: 23701047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pelagic crinoids (Roveacrinida, Crinoidea) discovered in the Neogene of Poland.
    Gorzelak P; Salamon MA; Ferré B
    Naturwissenschaften; 2011 Oct; 98(10):903-8. PubMed ID: 21881909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.