These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12054344)

  • 1. Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms.
    Muir WM; Howard RD
    Transgenic Res; 2002 Apr; 11(2):101-14. PubMed ID: 12054344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis.
    Muir WM; Howard RD
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13853-6. PubMed ID: 10570162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitness components and ecological risk of transgenic release: a model using Japanese medaka (Oryzias latipes).
    Muir WM; Howard RD
    Am Nat; 2001 Jul; 158(1):1-16. PubMed ID: 18707311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish.
    Howard RD; DeWoody JA; Muir WM
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2934-8. PubMed ID: 14976259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish.
    Devlin RH; Sundström LF; Muir WM
    Trends Biotechnol; 2006 Feb; 24(2):89-97. PubMed ID: 16380181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full life-cycle assessment of gene flow consistent with fitness differences in transgenic and wild-type Japanese medaka fish (Oryzias latipes).
    Pennington KM; Kapuscinski AR; Morton MS; Cooper AM; Miller LM
    Environ Biosafety Res; 2010; 9(1):41-57. PubMed ID: 21122485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies.
    Hu W; Wang Y; Zhu Z
    Sci China C Life Sci; 2007 Oct; 50(5):573-9. PubMed ID: 17879053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration mechanisms of transgenes and population fitness of GH transgenic fish.
    Hu W; Zhu Z
    Sci China Life Sci; 2010 Apr; 53(4):401-8. PubMed ID: 20596905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Escape of transgenes and its ecological risks].
    Lu B; Zhang W; Li B
    Ying Yong Sheng Tai Xue Bao; 2003 Jun; 14(6):989-94. PubMed ID: 12974012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and ecological consequences of transgene flow to the wild flora.
    Felber F; Kozlowski G; Arrigo N; Guadagnuolo R
    Adv Biochem Eng Biotechnol; 2007; 107():173-205. PubMed ID: 17522826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic species. Engineered fish: friend or foe of the environment?
    Stokstad E
    Science; 2002 Sep; 297(5588):1797-9. PubMed ID: 12228699
    [No Abstract]   [Full Text] [Related]  

  • 12. Transgenic common carp do not have the ability to expand populations.
    Lian H; Hu W; Huang R; Du F; Liao L; Zhu Z; Wang Y
    PLoS One; 2013; 8(6):e65506. PubMed ID: 23762383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo.
    Laughlin KD; Power AG; Snow AA; Spencer LJ
    Ecol Appl; 2009 Jul; 19(5):1091-101. PubMed ID: 19688918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa).
    Vacher C; Weis AE; Hermann D; Kossler T; Young C; Hochberg ME
    Theor Appl Genet; 2004 Aug; 109(4):806-14. PubMed ID: 15340690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic fish resistant to infectious diseases, their risk and prevention of escape into the environment and future candidate genes for disease transgene manipulation.
    Dunham RA
    Comp Immunol Microbiol Infect Dis; 2009 Mar; 32(2):139-61. PubMed ID: 18249446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene-environment interactions influence ecological consequences of transgenic animals.
    Sundström LF; Lõhmus M; Tymchuk WE; Devlin RH
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3889-94. PubMed ID: 17360448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences.
    Lu BR; Yang C
    Biotechnol Adv; 2009; 27(6):1083-1091. PubMed ID: 19463932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current scientific understanding of the environmental biosafety of transgenic fish and shellfish.
    Kapuscinski AR
    Rev Sci Tech; 2005 Apr; 24(1):309-22. PubMed ID: 16110898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standing genetic variation and compensatory evolution in transgenic organisms: a growth-enhanced salmon simulation.
    Ahrens RN; Devlin RH
    Transgenic Res; 2011 Jun; 20(3):583-97. PubMed ID: 20878546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trangenic fish as models in environmental toxicology.
    Winn RN
    ILAR J; 2001; 42(4):322-9. PubMed ID: 11581523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.