BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12054481)

  • 1. A 40-kDa polypeptide from papain digestion of the rabbit intestinal Na+/phosphate cotransporter retains Na+ and phosphate cotransport.
    Peerce BE
    Arch Biochem Biophys; 2002 May; 401(1):1-10. PubMed ID: 12054481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of substrates with the intestinal brush border membrane Na/phosphate cotransporter.
    Peerce BE
    Biochim Biophys Acta; 1997 Jan; 1323(1):45-56. PubMed ID: 9030211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the molecular mechanism of SH reagent-induced inhibition of the intestinal brush-border membrane Na+/phosphate cotransporter.
    Peerce BE; Cedilote M; Clarke RD
    Biochim Biophys Acta; 1995 Oct; 1239(1):11-21. PubMed ID: 7548138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substrates and pH on the intestinal Na+/phosphate cotransporter: evidence for an intervesicular divalent phosphate allosteric regulatory site.
    Peerce BE
    Biochim Biophys Acta; 1995 Oct; 1239(1):1-10. PubMed ID: 7548137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of the mechanism of Na+/phosphate cotransport. Use of fluorophosphate and the nature of cotransporter functional asymmetry.
    Peerce BE; Kiesling C
    Miner Electrolyte Metab; 1990; 16(2-3):125-9. PubMed ID: 2250618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ischemia-reperfusion on the renal brush-border membrane sodium-dependent phosphate cotransporter NaPi-2.
    Xiao Y; Desrosiers RR; Beliveau R
    Can J Physiol Pharmacol; 2001 Mar; 79(3):206-12. PubMed ID: 11294596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phosphorylated phloretin derivative. Synthesis and effect on intestinal Na(+)-dependent phosphate absorption.
    Peerce BE; Clarke R
    Am J Physiol Gastrointest Liver Physiol; 2002 Oct; 283(4):G848-55. PubMed ID: 12223344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine.
    Radanovic T; Wagner CA; Murer H; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine.
    Stauber A; Radanovic T; Stange G; Murer H; Wagner CA; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G501-6. PubMed ID: 15701624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The renal type IIa Na/Pi cotransporter: structure-function relationships.
    Murer H; Köhler K; Lambert G; Stange G; Biber J; Forster I
    Cell Biochem Biophys; 2002; 36(2-3):215-20. PubMed ID: 12139407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the intestinal Na-phosphate cotransporter.
    Peerce BE
    Am J Physiol; 1989 Apr; 256(4 Pt 1):G645-52. PubMed ID: 2705525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional studies on a split type II Na/P(i)-cotransporter.
    Ehnes C; Forster IC; Köhler K; Biber J; Murer H
    J Membr Biol; 2002 Aug; 188(3):227-36. PubMed ID: 12181613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the substrate stoichiometry of the intestinal Na+/phosphate cotransporter.
    Peerce BE
    J Membr Biol; 1989 Sep; 110(2):189-97. PubMed ID: 2810348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-P(i) cotransporter during ontogeny.
    Arima K; Hines ER; Kiela PR; Drees JB; Collins JF; Ghishan FK
    Am J Physiol Gastrointest Liver Physiol; 2002 Aug; 283(2):G426-34. PubMed ID: 12121891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of intestinal Na(+)-phosphate cotransporter.
    Peerce BE; Cedilote M; Seifert S; Levine R; Kiesling C; Clarke RD
    Am J Physiol; 1993 Apr; 264(4 Pt 1):G609-16. PubMed ID: 8476048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites.
    Ehnes C; Forster IC; Bacconi A; Kohler K; Biber J; Murer H
    J Gen Physiol; 2004 Nov; 124(5):489-503. PubMed ID: 15504899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local conformational changes in the Vibrio Na+/galactose cotransporter.
    Veenstra M; Lanza S; Hirayama BA; Turk E; Wright EM
    Biochemistry; 2004 Mar; 43(12):3620-7. PubMed ID: 15035632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney.
    Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA
    Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo.
    Matsuo A; Negoro T; Seo T; Kitao Y; Shindo M; Segawa H; Miyamoto K
    Eur J Pharmacol; 2005 Jul; 517(1-2):111-9. PubMed ID: 15961073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.