These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 12054743)
1. A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex. Puzon GJ; Petersen JN; Roberts AG; Kramer DM; Xun L Biochem Biophys Res Commun; 2002 May; 294(1):76-81. PubMed ID: 12054743 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of an NAD+-degrading bacterium PTX1 and its role in chromium biogeochemical cycle. Puzon GJ; Huang Y; Dohnalkova A; Xun L Biodegradation; 2008 Jun; 19(3):417-24. PubMed ID: 17701280 [TBL] [Abstract][Full Text] [Related]
3. Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Sedláček V; Kučera I Arch Microbiol; 2010 Nov; 192(11):919-26. PubMed ID: 20821194 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Ackerley DF; Gonzalez CF; Keyhan M; Blake R; Matin A Environ Microbiol; 2004 Aug; 6(8):851-60. PubMed ID: 15250887 [TBL] [Abstract][Full Text] [Related]
5. Studies on biological reduction of chromate by Streptomyces griseus. Poopal AC; Laxman RS J Hazard Mater; 2009 Sep; 169(1-3):539-45. PubMed ID: 19410364 [TBL] [Abstract][Full Text] [Related]
6. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Puzon GJ; Roberts AG; Kramer DM; Xun L Environ Sci Technol; 2005 Apr; 39(8):2811-7. PubMed ID: 15884380 [TBL] [Abstract][Full Text] [Related]
7. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
8. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Ackerley DF; Gonzalez CF; Park CH; Blake R; Keyhan M; Matin A Appl Environ Microbiol; 2004 Feb; 70(2):873-82. PubMed ID: 14766567 [TBL] [Abstract][Full Text] [Related]
9. Purification and partial characterization of a chromate reductase from Bacillus. Campos-García J; Martínez-Cadena G; Alvarez-González R; Cervantes C Rev Latinoam Microbiol; 1997; 39(1-2):73-81. PubMed ID: 10932716 [TBL] [Abstract][Full Text] [Related]
10. Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. Xia X; Wu S; Li N; Wang D; Zheng S; Wang G J Hazard Mater; 2018 Jan; 342():499-509. PubMed ID: 28881274 [TBL] [Abstract][Full Text] [Related]
11. Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile. Magnuson TS; Swenson MW; Paszczynski AJ; Deobald LA; Kerk D; Cummings DE Biometals; 2010 Dec; 23(6):1129-38. PubMed ID: 20593301 [TBL] [Abstract][Full Text] [Related]
12. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study. Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470 [TBL] [Abstract][Full Text] [Related]
13. The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. Gaudu P; Touati D; Nivière V; Fontecave M J Biol Chem; 1994 Mar; 269(11):8182-8. PubMed ID: 8132544 [TBL] [Abstract][Full Text] [Related]
15. Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate. Zhitkovich A; Voitkun V; Costa M Carcinogenesis; 1995 Apr; 16(4):907-13. PubMed ID: 7728973 [TBL] [Abstract][Full Text] [Related]
16. Sulfite reductase of Escherichia coli is a ferrisiderophore reductase. Coves J; Eschenbrenner M; Fontecave M Biochem Biophys Res Commun; 1993 May; 192(3):1403-8. PubMed ID: 8389549 [TBL] [Abstract][Full Text] [Related]
17. Influence of vitamin B2 on formation of chromium(V), alkali-labile sites, and lethality of sodium chromate(VI) in Chinese hamster V-79 cells. Sugiyama M; Ando A; Nakao K; Ueta H; Hidaka T; Ogura R Cancer Res; 1989 Nov; 49(22):6180-4. PubMed ID: 2553247 [TBL] [Abstract][Full Text] [Related]
18. The chromate resistance phenotype of some yeast mutants correlates with a lower level of Cr(V)-species generated in the extra-cellular medium. Ksheminska H; Honchar T; Usatenko Y; Gayda G; Gonchar M Biometals; 2010 Aug; 23(4):633-42. PubMed ID: 20225069 [TBL] [Abstract][Full Text] [Related]
19. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Sarangi A; Krishnan C Bioresour Technol; 2008 Jul; 99(10):4130-7. PubMed ID: 17920879 [TBL] [Abstract][Full Text] [Related]
20. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex. Reipa V; Holden MJ; Vilker VL Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]