BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12054809)

  • 1. Interaction of the chaperone BiP with an antibody domain: implications for the chaperone cycle.
    Knarr G; Kies U; Bell S; Mayer M; Buchner J
    J Mol Biol; 2002 May; 318(3):611-20. PubMed ID: 12054809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the ATPase cycle of BiP by peptides and proteins.
    Mayer M; Reinstein J; Buchner J
    J Mol Biol; 2003 Jun; 330(1):137-44. PubMed ID: 12818208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of peptide binding to the bovine 70 kDa heat shock cognate protein, a molecular chaperone.
    Takeda S; McKay DB
    Biochemistry; 1996 Apr; 35(14):4636-44. PubMed ID: 8605215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interdomain communication in the molecular chaperone DnaK.
    Han W; Christen P
    Biochem J; 2003 Feb; 369(Pt 3):627-34. PubMed ID: 12383055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the major interaction between binding protein and Ig light chains to sites within the variable domain.
    Davis DP; Khurana R; Meredith S; Stevens FJ; Argon Y
    J Immunol; 1999 Oct; 163(7):3842-50. PubMed ID: 10490983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum.
    Alder NN; Shen Y; Brodsky JL; Hendershot LM; Johnson AE
    J Cell Biol; 2005 Jan; 168(3):389-99. PubMed ID: 15684029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of peptide-induced depolymerization of the recombinant carboxy-terminal fragment of BiP/GRP78.
    King L; Chevalier M; Blond SY
    Biochem Biophys Res Commun; 1999 Sep; 263(1):181-6. PubMed ID: 10486274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, expression, and characterization of fully functional nontoxic BiP/GRP78 mutants.
    King LS; Berg M; Chevalier M; Carey A; Elguindi EC; Blond SY
    Protein Expr Purif; 2001 Jun; 22(1):148-58. PubMed ID: 11388813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV; Patchen B; Peterson KM; Witt SN
    Biochemistry; 2003 May; 42(19):5867-76. PubMed ID: 12741845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine nucleotides and the regulation of GRP94-client protein interactions.
    Rosser MF; Trotta BM; Marshall MR; Berwin B; Nicchitta CV
    Biochemistry; 2004 Jul; 43(27):8835-45. PubMed ID: 15236592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly.
    Lee YK; Brewer JW; Hellman R; Hendershot LM
    Mol Biol Cell; 1999 Jul; 10(7):2209-19. PubMed ID: 10397760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable interaction of the cargo receptor VIP36 with molecular chaperone BiP.
    Nawa D; Shimada O; Kawasaki N; Matsumoto N; Yamamoto K
    Glycobiology; 2007 Sep; 17(9):913-21. PubMed ID: 17586539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae.
    Todd-Corlett A; Jones E; Seghers C; Gething MJ
    J Mol Biol; 2007 Mar; 367(3):770-87. PubMed ID: 17276461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo analysis of the lumenal binding protein (BiP) reveals multiple functions of its ATPase domain.
    Snowden CJ; Leborgne-Castel N; Wootton LJ; Hadlington JL; Denecke J
    Plant J; 2007 Dec; 52(6):987-1000. PubMed ID: 17971046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of normal lysosomal and mutant N-acetylgalactosamine 4-sulphatase: BiP (immunoglobulin heavy-chain binding protein) may interact with critical protein contact sites.
    Bradford TM; Gething MJ; Davey R; Hopwood JJ; Brooks DA
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):193-201. PubMed ID: 10377262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BiP binding sequences in antibodies.
    Knarr G; Gething MJ; Modrow S; Buchner J
    J Biol Chem; 1995 Nov; 270(46):27589-94. PubMed ID: 7499221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum Hsp90 chaperone GRP94.
    Wearsch PA; Voglino L; Nicchitta CV
    Biochemistry; 1998 Apr; 37(16):5709-19. PubMed ID: 9548957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis.
    Wei J; Gaut JR; Hendershot LM
    J Biol Chem; 1995 Nov; 270(44):26677-82. PubMed ID: 7592894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of the BiP-retention domain in Cmicro permits surface deposition and developmental progression without L-chain.
    Zou X; Smith JA; Corcos D; Matheson LS; Osborn MJ; Brüggemann M
    Mol Immunol; 2008 Aug; 45(13):3573-9. PubMed ID: 18584871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum.
    Hendershot LM; Wei JY; Gaut JR; Lawson B; Freiden PJ; Murti KG
    Mol Biol Cell; 1995 Mar; 6(3):283-96. PubMed ID: 7612964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.