These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 12054833)
1. Homology, pathway distance and chromosomal localization of the small molecule metabolism enzymes in Escherichia coli. Rison SC; Teichmann SA; Thornton JM J Mol Biol; 2002 May; 318(3):911-32. PubMed ID: 12054833 [TBL] [Abstract][Full Text] [Related]
2. A genome rearrangement has orphaned the Escherichia coli K-12 AcpT phosphopantetheinyl transferase from its cognate Escherichia coli O157:H7 substrates. De Lay NR; Cronan JE Mol Microbiol; 2006 Jul; 61(1):232-42. PubMed ID: 16824108 [TBL] [Abstract][Full Text] [Related]
3. Conservation of gene co-regulation between two prokaryotes: Bacillus subtilis and Escherichia coli. Okuda S; Kawashima S; Goto S; Kanehisa M Genome Inform; 2005; 16(1):116-24. PubMed ID: 16362913 [TBL] [Abstract][Full Text] [Related]
4. A structural census of metabolic networks for E. coli. Saqi MA; Sternberg MJ J Mol Biol; 2001 Nov; 313(5):1195-206. PubMed ID: 11700074 [TBL] [Abstract][Full Text] [Related]
5. Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. Riley M; Labedan B J Mol Biol; 1997 May; 268(5):857-68. PubMed ID: 9180377 [TBL] [Abstract][Full Text] [Related]
6. Operon conservation from the point of view of Escherichia coli, and inference of functional interdependence of gene products from genome context. Moreno-Hagelsieb G; Collado-Vides J In Silico Biol; 2002; 2(2):87-95. PubMed ID: 12066843 [TBL] [Abstract][Full Text] [Related]
7. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. Goldsmith-Fischman S; Kuzin A; Edstrom WC; Benach J; Shastry R; Xiao R; Acton TB; Honig B; Montelione GT; Hunt JF J Mol Biol; 2004 Nov; 344(2):549-65. PubMed ID: 15522304 [TBL] [Abstract][Full Text] [Related]
8. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase. Wang H; Cronan JE Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862 [TBL] [Abstract][Full Text] [Related]
9. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Hubbard BK; Koch M; Palmer DR; Babbitt PC; Gerlt JA Biochemistry; 1998 Oct; 37(41):14369-75. PubMed ID: 9772162 [TBL] [Abstract][Full Text] [Related]
10. Periodic transcriptional organization of the E.coli genome. Képès F J Mol Biol; 2004 Jul; 340(5):957-64. PubMed ID: 15236959 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae. Jardine O; Gough J; Chothia C; Teichmann SA Genome Res; 2002 Jun; 12(6):916-29. PubMed ID: 12045145 [TBL] [Abstract][Full Text] [Related]
12. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor. Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488 [TBL] [Abstract][Full Text] [Related]
13. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Pollack JD; Williams MV; McElhaney RN Crit Rev Microbiol; 1997; 23(4):269-354. PubMed ID: 9439886 [TBL] [Abstract][Full Text] [Related]
14. Internal versus external effector and transcription factor gene pairs differ in their relative chromosomal position in Escherichia coli. Janga SC; Salgado H; Collado-Vides J; Martínez-Antonio A J Mol Biol; 2007 Apr; 368(1):263-72. PubMed ID: 17321548 [TBL] [Abstract][Full Text] [Related]
15. luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. Wang L; Li J; March JC; Valdes JJ; Bentley WE J Bacteriol; 2005 Dec; 187(24):8350-60. PubMed ID: 16321939 [TBL] [Abstract][Full Text] [Related]
17. The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. Teichmann SA; Rison SC; Thornton JM; Riley M; Gough J; Chothia C J Mol Biol; 2001 Aug; 311(4):693-708. PubMed ID: 11518524 [TBL] [Abstract][Full Text] [Related]
18. Modelling the evolution of the archeal tryptophan synthase. Merkl R BMC Evol Biol; 2007 Apr; 7():59. PubMed ID: 17425797 [TBL] [Abstract][Full Text] [Related]
19. Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose. Kim J; Copley SD Biochemistry; 2007 Nov; 46(44):12501-11. PubMed ID: 17935357 [TBL] [Abstract][Full Text] [Related]
20. Novel modified version of nonphosphorylated sugar metabolism--an alternative L-rhamnose pathway of Sphingomonas sp. Watanabe S; Makino K FEBS J; 2009 Mar; 276(6):1554-67. PubMed ID: 19187228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]