BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 12054874)

  • 21. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Escherichia coli diacylglycerol kinase is an alpha-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles.
    Sanders CR; Czerski L; Vinogradova O; Badola P; Song D; Smith SO
    Biochemistry; 1996 Jul; 35(26):8610-8. PubMed ID: 8679623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides.
    Ulmschneider MB; Doux JP; Killian JA; Smith JC; Ulmschneider JP
    J Am Chem Soc; 2010 Mar; 132(10):3452-60. PubMed ID: 20163187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions.
    de Planque MR; Bonev BB; Demmers JA; Greathouse DV; Koeppe RE; Separovic F; Watts A; Killian JA
    Biochemistry; 2003 May; 42(18):5341-8. PubMed ID: 12731875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic helical propensities and stable secondary structure in a membrane-bound fragment (S4) of the shaker potassium channel.
    Halsall A; Dempsey CE
    J Mol Biol; 1999 Nov; 293(4):901-15. PubMed ID: 10543975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase.
    Clark EH; East JM; Lee AG
    Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of end group blockage on the properties of a class A amphipathic helical peptide.
    Venkatachalapathi YV; Phillips MC; Epand RM; Epand RF; Tytler EM; Segrest JP; Anantharamaiah GM
    Proteins; 1993 Apr; 15(4):349-59. PubMed ID: 8460106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a soluble transmembrane helix for measurements of water-membrane partitioning.
    Yano Y; Shimai N; Matsuzaki K
    J Phys Chem B; 2010 Feb; 114(5):1925-31. PubMed ID: 20085245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers.
    Martin I; Pécheur EI; Ruysschaert JM; Hoekstra D
    Biochemistry; 1999 Jul; 38(29):9337-47. PubMed ID: 10413508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin.
    Palchevskyy SS; Posokhov YO; Olivier B; Popot JL; Pucci B; Ladokhin AS
    Biochemistry; 2006 Feb; 45(8):2629-35. PubMed ID: 16489756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of prion protein to lipid membranes and implications for prion conversion.
    Sanghera N; Pinheiro TJ
    J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of various membrane physical-chemical properties on the aggregation kinetics of insulin.
    Grudzielanek S; Smirnovas V; Winter R
    Chem Phys Lipids; 2007; 149(1-2):28-39. PubMed ID: 17603032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration.
    Ren J; Lew S; Wang Z; London E
    Biochemistry; 1997 Aug; 36(33):10213-20. PubMed ID: 9254619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biophysical study of integral membrane protein folding.
    Hunt JF; Earnest TN; Bousché O; Kalghatgi K; Reilly K; Horváth C; Rothschild KJ; Engelman DM
    Biochemistry; 1997 Dec; 36(49):15156-76. PubMed ID: 9398244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of helix nucleation in the kinetics of binding of mastoparan X to phospholipid bilayers.
    Tang J; Signarvic RS; DeGrado WF; Gai F
    Biochemistry; 2007 Dec; 46(48):13856-63. PubMed ID: 17994771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition.
    Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B
    Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Folding kinetics of an alpha helical membrane protein in phospholipid bilayer vesicles.
    Allen SJ; Curran AR; Templer RH; Meijberg W; Booth PJ
    J Mol Biol; 2004 Sep; 342(4):1279-91. PubMed ID: 15351651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insertion kinetics of a denatured alpha helical membrane protein into phospholipid bilayer vesicles.
    Lorch M; Booth PJ
    J Mol Biol; 2004 Dec; 344(4):1109-21. PubMed ID: 15544815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.