These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 12055024)
1. Acute toxicity of TBT and IRGAROL in Artemia salina. Panagoula B; Panayiota M; Iliopoulou-Georgudaki J Int J Toxicol; 2002; 21(3):231-3. PubMed ID: 12055024 [TBL] [Abstract][Full Text] [Related]
2. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Bao VW; Leung KM; Qiu JW; Lam MH Mar Pollut Bull; 2011 May; 62(5):1147-51. PubMed ID: 21420693 [TBL] [Abstract][Full Text] [Related]
3. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Jung SM; Bae JS; Kang SG; Son JS; Jeon JH; Lee HJ; Jeon JY; Sidharthan M; Ryu SH; Shin HW Mar Pollut Bull; 2017 Nov; 124(2):811-818. PubMed ID: 27919420 [TBL] [Abstract][Full Text] [Related]
4. Effects of tributyltin chloride on cell structures of epithelial layer in different stages of Abushaala NM Open Vet J; 2020 Jan; 9(4):366-374. PubMed ID: 32042660 [TBL] [Abstract][Full Text] [Related]
5. Comparative toxicity of antifouling compounds on the development of sea urchin. Perina FC; Abessa DM; Pinho GL; Fillmann G Ecotoxicology; 2011 Nov; 20(8):1870-80. PubMed ID: 21710306 [TBL] [Abstract][Full Text] [Related]
6. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Kim NS; Shim WJ; Yim UH; Hong SH; Ha SY; Han GM; Shin KH Mar Pollut Bull; 2014 Jan; 78(1-2):201-8. PubMed ID: 24295595 [TBL] [Abstract][Full Text] [Related]
7. Toxic and accumulative potential of the antifouling biocide and TBT successor irgarol on freshwater macrophytes: a pond mesocosm study. Mohr S; Berghahn R; Mailahn W; Schmiediche R; Feibicke M; Schmidt R Environ Sci Technol; 2009 Sep; 43(17):6838-43. PubMed ID: 19764257 [TBL] [Abstract][Full Text] [Related]
8. Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Thomas KV; Fileman TW; Readman JW; Waldock MJ Mar Pollut Bull; 2001 Aug; 42(8):677-88. PubMed ID: 11525285 [TBL] [Abstract][Full Text] [Related]
9. Acute and chronic toxicities of tributyltin to various life stages of the marine polychaete Hydroides elegans. Lau MC; Chan KM; Leung KM; Luan TG; Yang MS; Qiu JW Chemosphere; 2007 Aug; 69(1):135-44. PubMed ID: 17509645 [TBL] [Abstract][Full Text] [Related]
10. A macroalgal germling bioassay to assess biocide concentrations in marine waters. Girling JA; Thomas KV; Brooks SJ; Smith DJ; Shahsavari E; Ball AS Mar Pollut Bull; 2015 Feb; 91(1):82-6. PubMed ID: 25558019 [TBL] [Abstract][Full Text] [Related]
11. Acute toxicity of tributyltin to the Caprellidea (Crustacea: Amphipoda). Ohji M; Arai T; Miyazaki N Mar Environ Res; 2005 Apr; 59(3):197-201. PubMed ID: 15465129 [TBL] [Abstract][Full Text] [Related]
12. Effects of three antifouling agents on algal communities and algal reproduction: mixture toxicity studies with TBT, Irgarol, and Sea-Nine. Arrhenius A; Backhaus T; Grönvall F; Junghans M; Scholze M; Blanck H Arch Environ Contam Toxicol; 2006 Apr; 50(3):335-45. PubMed ID: 16392016 [TBL] [Abstract][Full Text] [Related]
13. Lethal and sublethal toxicity of the antifoulant compound Irgarol 1051 to the mud snail Ilyanassa obsoleta. Finnegan MC; Pittman S; DeLorenzo ME Arch Environ Contam Toxicol; 2009 Jan; 56(1):85-95. PubMed ID: 18458994 [TBL] [Abstract][Full Text] [Related]
14. Comparative toxicity of single and combined mixtures of selected pollutants among larval stages of the native freshwater mussels (Unio elongatulus) and the invasive zebra mussel (Dreissena polymorpha). Faria M; López MA; Fernández-Sanjuan M; Lacorte S; Barata C Sci Total Environ; 2010 May; 408(12):2452-8. PubMed ID: 20347474 [TBL] [Abstract][Full Text] [Related]
15. First evaluation of the threat posed by antifouling biocides in the Southern Adriatic Sea. Manzo S; Ansanelli G; Parrella L; Di Landa G; Massanisso P; Schiavo S; Minopoli C; Lanza B; Boggia R; Aleksi P; Tabaku A Environ Sci Process Impacts; 2014 Aug; 16(8):1981-93. PubMed ID: 24936527 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Kwok KW; Leung KM Mar Pollut Bull; 2005; 51(8-12):830-7. PubMed ID: 16291193 [TBL] [Abstract][Full Text] [Related]
17. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas. Mai H; Morin B; Pardon P; Gonzalez P; Budzinski H; Cachot J Mar Environ Res; 2013 Aug; 89():1-8. PubMed ID: 23727205 [TBL] [Abstract][Full Text] [Related]
18. Effects of tributyltin on metamorphosis and gonadal differentiation of Xenopus laevis at environmentally relevant concentrations. Shi H; Zhu P; Guo S Toxicol Ind Health; 2014 May; 30(4):297-303. PubMed ID: 22903176 [TBL] [Abstract][Full Text] [Related]
19. Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus. Gutner-Hoch E; Martins R; Maia F; Oliveira T; Shpigel M; Weis M; Tedim J; Benayahu Y Environ Pollut; 2019 Aug; 251():530-537. PubMed ID: 31108285 [TBL] [Abstract][Full Text] [Related]
20. An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Hall LW; Giddings JM; Solomon KR; Balcomb R Crit Rev Toxicol; 1999 Jul; 29(4):367-437. PubMed ID: 10451264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]