These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12055085)

  • 1. K+-induced twitch potentiation is not due to longer action potential.
    Yensen C; Matar W; Renaud JM
    Am J Physiol Cell Physiol; 2002 Jul; 283(1):C169-77. PubMed ID: 12055085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle.
    Cairns SP; Hing WA; Slack JR; Mills RG; Loiselle DS
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C598-611. PubMed ID: 9277357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium-induced potentiation of subtetanic force in rat skeletal muscles: influences of β
    Olesen JH; Herskind J; Pedersen KK; Overgaard K
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C884-C896. PubMed ID: 34613841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of dietary creatine supplements on the contractile properties of rat soleus and extensor digitorum longus muscles.
    McGuire M; Bradford A; MacDermott M
    Exp Physiol; 2001 Mar; 86(2):185-90. PubMed ID: 11429633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The peak force-resting membrane potential relationships of mouse fast- and slow-twitch muscle.
    Cairns SP; Leader JP; Higgins A; Renaud JM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1151-C1165. PubMed ID: 35385328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo.
    Renaud JM; Light P
    Can J Physiol Pharmacol; 1992 Sep; 70(9):1236-46. PubMed ID: 1493591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.
    Hansen AK; Clausen T; Nielsen OB
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C104-12. PubMed ID: 15743886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+ and K+ effect on contractility of frog sartorius muscle: implication for the mechanism of fatigue.
    Bouclin R; Charbonneau E; Renaud JM
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1528-36. PubMed ID: 7611374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle.
    Gong B; Legault D; Miki T; Seino S; Renaud JM
    Am J Physiol Cell Physiol; 2003 Dec; 285(6):C1464-74. PubMed ID: 12917105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in potassium contractures due to simulated weightlessness in rat soleus muscle.
    Khammari A; Noireaud J
    J Appl Physiol (1985); 1994 Nov; 77(5):2420-5. PubMed ID: 7868464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of isoprenaline on contractions of directly stimulated fast and slow skeletal muscles of the guinea-pig.
    Tashiro N
    Br J Pharmacol; 1973 May; 48(1):121-31. PubMed ID: 4724184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle.
    Cairns SP; Hing WA; Slack JR; Mills RG; Loiselle DS
    J Appl Physiol (1985); 1998 Apr; 84(4):1395-406. PubMed ID: 9516209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of action potentials and force at lowered [Na+]o in mouse skeletal muscle: implications for fatigue.
    Cairns SP; Buller SJ; Loiselle DS; Renaud JM
    Am J Physiol Cell Physiol; 2003 Nov; 285(5):C1131-41. PubMed ID: 12826603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moderately elevated extracellular [K
    Pedersen KK; Cheng AJ; Westerblad H; Olesen JH; Overgaard K
    Am J Physiol Cell Physiol; 2019 Nov; 317(5):C900-C909. PubMed ID: 31411922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure.
    Ertunc M; Sara Y; Korkusuz P; Onur R
    Pharmacology; 2009; 84(4):240-8. PubMed ID: 19776660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcomere length-dependence of activity-dependent twitch potentiation in mouse skeletal muscle.
    Rassier DE; MacIntosh BR
    BMC Physiol; 2002 Dec; 2():19. PubMed ID: 12475395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficiency of alpha-sarcoglycan differently affects fast- and slow-twitch skeletal muscles.
    Danieli-Betto D; Esposito A; Germinario E; Sandonà D; Martinello T; Jakubiec-Puka A; Biral D; Betto R
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1328-37. PubMed ID: 16002556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of contractile responses due to simulated weightlessness in rat soleus muscle.
    Elkhammari A; Noireaud J; Léoty C
    Adv Space Res; 1994; 14(8):377-80. PubMed ID: 11537943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.