These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

910 related articles for article (PubMed ID: 12055347)

  • 1. How host-microbial interactions shape the nutrient environment of the mammalian intestine.
    Hooper LV; Midtvedt T; Gordon JI
    Annu Rev Nutr; 2002; 22():283-307. PubMed ID: 12055347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.
    Pudlo NA; Urs K; Kumar SS; German JB; Mills DA; Martens EC
    mBio; 2015 Nov; 6(6):e01282-15. PubMed ID: 26556271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis.
    Xu J; Bjursell MK; Himrod J; Deng S; Carmichael LK; Chiang HC; Hooper LV; Gordon JI
    Science; 2003 Mar; 299(5615):2074-6. PubMed ID: 12663928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of cooperation within the gut microbiota.
    Rakoff-Nahoum S; Foster KR; Comstock LE
    Nature; 2016 May; 533(7602):255-9. PubMed ID: 27111508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Honor thy symbionts.
    Xu J; Gordon JI
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10452-9. PubMed ID: 12923294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal IgA Regulates Expression of a Fructan Polysaccharide Utilization Locus in Colonizing Gut Commensal Bacteroides thetaiotaomicron.
    Joglekar P; Ding H; Canales-Herrerias P; Pasricha PJ; Sonnenburg JL; Peterson DA
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction.
    Zocco MA; Ainora ME; Gasbarrini G; Gasbarrini A
    Dig Liver Dis; 2007 Aug; 39(8):707-12. PubMed ID: 17602905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism.
    Sonnenburg ED; Sonnenburg JL; Manchester JK; Hansen EE; Chiang HC; Gordon JI
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8834-9. PubMed ID: 16735464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis.
    Cameron EA; Kwiatkowski KJ; Lee BH; Hamaker BR; Koropatkin NM; Martens EC
    mBio; 2014 Sep; 5(5):e01441-14. PubMed ID: 25205092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.
    Tuncil YE; Xiao Y; Porter NT; Reuhs BL; Martens EC; Hamaker BR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron.
    Benjdia A; Martens EC; Gordon JI; Berteau O
    J Biol Chem; 2011 Jul; 286(29):25973-82. PubMed ID: 21507958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycan foraging in vivo by an intestine-adapted bacterial symbiont.
    Sonnenburg JL; Xu J; Leip DD; Chen CH; Westover BP; Weatherford J; Buhler JD; Gordon JI
    Science; 2005 Mar; 307(5717):1955-9. PubMed ID: 15790854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period.
    Bjursell MK; Martens EC; Gordon JI
    J Biol Chem; 2006 Nov; 281(47):36269-79. PubMed ID: 16968696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Metabolic Pathway for Activation of Dietary Glucosinolates by a Human Gut Symbiont.
    Liou CS; Sirk SJ; Diaz CAC; Klein AP; Fischer CR; Higginbottom SK; Erez A; Donia MS; Sonnenburg JL; Sattely ES
    Cell; 2020 Feb; 180(4):717-728.e19. PubMed ID: 32084341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem.
    Hooper LV; Bry L; Falk PG; Gordon JI
    Bioessays; 1998 Apr; 20(4):336-43. PubMed ID: 9619105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut.
    Heinken A; Sahoo S; Fleming RM; Thiele I
    Gut Microbes; 2013; 4(1):28-40. PubMed ID: 23022739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Message from a human gut symbiont: sensitivity is a prerequisite for sharing.
    Xu J; Chiang HC; Bjursell MK; Gordon JI
    Trends Microbiol; 2004 Jan; 12(1):21-8. PubMed ID: 14700548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis.
    Brown EM; Ke X; Hitchcock D; Jeanfavre S; Avila-Pacheco J; Nakata T; Arthur TD; Fornelos N; Heim C; Franzosa EA; Watson N; Huttenhower C; Haiser HJ; Dillow G; Graham DB; Finlay BB; Kostic AD; Porter JA; Vlamakis H; Clish CB; Xavier RJ
    Cell Host Microbe; 2019 May; 25(5):668-680.e7. PubMed ID: 31071294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem.
    Hooper LV; Xu J; Falk PG; Midtvedt T; Gordon JI
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9833-8. PubMed ID: 10449780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic mutation in
    Tsukimi T; Obana N; Shigemori S; Arakawa K; Miyauchi E; Yang J; Song I; Ashino Y; Wakayama M; Soga T; Tomita M; Ohno H; Mori H; Fukuda S
    mSystems; 2024 Feb; 9(2):e0112323. PubMed ID: 38205998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.