BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 12055658)

  • 1. Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy.
    Aparicio S; Doty SB; Camacho NP; Paschalis EP; Spevak L; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 2002 May; 70(5):422-9. PubMed ID: 12055658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fixation and embedding on Raman spectroscopic analysis of bone tissue.
    Yeni YN; Yerramshetty J; Akkus O; Pechey C; Les CM
    Calcif Tissue Int; 2006 Jun; 78(6):363-71. PubMed ID: 16830201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone.
    Boskey AL; Spevak L; Paschalis E; Doty SB; McKee MD
    Calcif Tissue Int; 2002 Aug; 71(2):145-54. PubMed ID: 12073157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice.
    Camacho NP; Carroll P; Raggio CL
    Calcif Tissue Int; 2003 May; 72(5):604-9. PubMed ID: 12574874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy.
    Fuchs RK; Allen MR; Ruppel ME; Diab T; Phipps RJ; Miller LM; Burr DB
    Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.
    Mieczkowska A; Mansur SA; Irwin N; Flatt PR; Chappard D; Mabilleau G
    Bone; 2015 Jul; 76():31-9. PubMed ID: 25813583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls.
    Boskey AL; Moore DJ; Amling M; Canalis E; Delany AM
    J Bone Miner Res; 2003 Jun; 18(6):1005-11. PubMed ID: 12817752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.
    Bonewald LF; Harris SE; Rosser J; Dallas MR; Dallas SL; Camacho NP; Boyan B; Boskey A
    Calcif Tissue Int; 2003 May; 72(5):537-47. PubMed ID: 12724828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage.
    Camacho NP; West P; Torzilli PA; Mendelsohn R
    Biopolymers; 2001; 62(1):1-8. PubMed ID: 11135186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of IGF-binding protein 5 alters mineral and matrix properties in mouse femora: an infrared imaging study.
    Atti E; Boskey AL; Canalis E
    Calcif Tissue Int; 2005 Mar; 76(3):187-93. PubMed ID: 15570402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the maturation of the organic (type I collagen) and mineral (nonstoichiometric apatite) constituents of a calcified tissue (dentin) as a function of location: a Fourier transform infrared microspectroscopic investigation.
    Magne D; Weiss P; Bouler JM; Laboux O; Daculsi G
    J Bone Miner Res; 2001 Apr; 16(4):750-7. PubMed ID: 11316003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hormone replacement therapy on bone quality in early postmenopausal women.
    Paschalis EP; Boskey AL; Kassem M; Eriksen EF
    J Bone Miner Res; 2003 Jun; 18(6):955-9. PubMed ID: 12817747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of different fixatives and hydrophilic embedding media (Historesin and Unicryl) for the study of embryonic tissues.
    González Santander R; Martínez Cuadrado G; González-Santander Martínez M; Monteagudo M; Martínez Alonso FJ; Toledo Lobo MV
    Microsc Res Tech; 1997 Feb; 36(3):151-8. PubMed ID: 9080404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic characterization of collagen cross-links in bone.
    Paschalis EP; Verdelis K; Doty SB; Boskey AL; Mendelsohn R; Yamauchi M
    J Bone Miner Res; 2001 Oct; 16(10):1821-8. PubMed ID: 11585346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform infrared imaging as a tool to chemically and spatially characterize matrix-mineral deposition in osteoblasts.
    Faillace ME; Phipps RJ; Miller LM
    Calcif Tissue Int; 2013 Jan; 92(1):50-8. PubMed ID: 23143076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of FTIR spectral imaging and chemometrics for tumour detection from paraffin-embedded biopsies.
    Ly E; Piot O; Wolthuis R; Durlach A; Bernard P; Manfait M
    Analyst; 2008 Feb; 133(2):197-205. PubMed ID: 18227942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.
    Aydin HM; Hu B; Suso JS; El Haj A; Yang Y
    Analyst; 2011 Feb; 136(4):775-80. PubMed ID: 21152629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fixation protocols for subcellular imaging by synchrotron-based Fourier transform infrared microspectroscopy.
    Gazi E; Dwyer J; Lockyer NP; Miyan J; Gardner P; Hart C; Brown M; Clarke NW
    Biopolymers; 2005 Jan; 77(1):18-30. PubMed ID: 15558657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.