BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12056903)

  • 1. Minimum number of 2'-O-(2-aminoethyl) residues required for gene knockout activity by triple helix forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Natt F; Martin P; Boyd A; Miller PS; Seidman MM
    Biochemistry; 2002 Jun; 41(24):7716-24. PubMed ID: 12056903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive sugar modification improves triple helix forming oligonucleotide activity in vitro but reduces activity in vivo.
    Alam MR; Majumdar A; Thazhathveetil AK; Liu ST; Liu JL; Puri N; Cuenoud B; Sasaki S; Miller PS; Seidman MM
    Biochemistry; 2007 Sep; 46(35):10222-33. PubMed ID: 17691818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of clustered 2'-O-(2-aminoethyl) residues for the gene targeting activity of triple helix-forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Miller PS; Seidman MM
    Biochemistry; 2004 Feb; 43(5):1343-51. PubMed ID: 14756571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted gene knockout by 2'-O-aminoethyl modified triplex forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Natt F; Martin P; Boyd A; Miller PS; Seidman MM
    J Biol Chem; 2001 Aug; 276(31):28991-8. PubMed ID: 11389147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement and inhibition by 2'-O-hydroxyethyl residues of gene targeting mediated by triple helix forming oligonucleotides.
    Kundu M; Nagatsugi F; Majumdar A; Miller PS; Seidman MM
    Nucleosides Nucleotides Nucleic Acids; 2003 Oct; 22(10):1927-38. PubMed ID: 14609232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide.
    Shahid KA; Majumdar A; Alam R; Liu ST; Kuan JY; Sui X; Cuenoud B; Glazer PM; Miller PS; Seidman MM
    Biochemistry; 2006 Feb; 45(6):1970-8. PubMed ID: 16460044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of bioactive triple helix-forming oligonucleotides.
    Seidman MM; Puri N; Majumdar A; Cuenoud B; Miller PS; Alam R
    Ann N Y Acad Sci; 2005 Nov; 1058():119-27. PubMed ID: 16394131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted gene knockout mediated by triple helix forming oligonucleotides.
    Majumdar A; Khorlin A; Dyatkina N; Lin FL; Powell J; Liu J; Fei Z; Khripine Y; Watanabe KA; George J; Glazer PM; Seidman MM
    Nat Genet; 1998 Oct; 20(2):212-4. PubMed ID: 9771719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplex-induced recombination and repair in the pyrimidine motif.
    Kalish JM; Seidman MM; Weeks DL; Glazer PM
    Nucleic Acids Res; 2005; 33(11):3492-502. PubMed ID: 15961731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex-forming oligonucleotide containing a novel base analogue.
    Semenyuk A; Darian E; Liu J; Majumdar A; Cuenoud B; Miller PS; Mackerell AD; Seidman MM
    Biochemistry; 2010 Sep; 49(36):7867-78. PubMed ID: 20701359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplex formation by oligonucleotides containing 5-(1-propynyl)-2'-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting.
    Lacroix L; Lacoste J; Reddoch JF; Mergny JL; Levy DD; Seidman MM; Matteucci MD; Glazer PM
    Biochemistry; 1999 Feb; 38(6):1893-901. PubMed ID: 10026270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide.
    Majumdar A; Puri N; Cuenoud B; Natt F; Martin P; Khorlin A; Dyatkina N; George AJ; Miller PS; Seidman MM
    J Biol Chem; 2003 Mar; 278(13):11072-7. PubMed ID: 12538585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation.
    Reshat R; Priestley CC; Gooderham NJ
    Mutagenesis; 2012 Nov; 27(6):713-9. PubMed ID: 22914677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplex-stimulated intermolecular recombination at a single-copy genomic target.
    Knauert MP; Kalish JM; Hegan DC; Glazer PM
    Mol Ther; 2006 Sep; 14(3):392-400. PubMed ID: 16731047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence and pH effects of LNA-containing triple helix-forming oligonucleotides: physical chemistry, biochemistry, and modeling studies.
    Sun BW; Babu BR; Sørensen MD; Zakrzewska K; Wengel J; Sun JS
    Biochemistry; 2004 Apr; 43(14):4160-9. PubMed ID: 15065859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.
    Alam R; Thazhathveetil AK; Li H; Seidman MM
    Methods Mol Biol; 2014; 1114():103-13. PubMed ID: 24557899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA triple-helix formation at pyrimidine-purine inversion sites.
    Parel SP; Marfurt J; Leumann CJ
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):411-7. PubMed ID: 11563056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene targeting by triple helix-forming oligonucleotides.
    Majumdar A; Puri N; McCollum N; Richards S; Cuenoud B; Miller P; Seidman MM
    Ann N Y Acad Sci; 2003 Dec; 1002():141-53. PubMed ID: 14751832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplex forming oligonucleotides: sequence-specific tools for gene targeting.
    Knauert MP; Glazer PM
    Hum Mol Genet; 2001 Oct; 10(20):2243-51. PubMed ID: 11673407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triplex targeted genomic crosslinks enter separable deletion and base substitution pathways.
    Richards S; Liu ST; Majumdar A; Liu JL; Nairn RS; Bernier M; Maher V; Seidman MM
    Nucleic Acids Res; 2005; 33(17):5382-93. PubMed ID: 16186129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.