BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12056903)

  • 21. Targeted genome modification via triple helix formation.
    Kalish JM; Glazer PM
    Ann N Y Acad Sci; 2005 Nov; 1058():151-61. PubMed ID: 16394134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells.
    Luo Z; Macris MA; Faruqi AF; Glazer PM
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9003-8. PubMed ID: 10900269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triplex targeted genomic crosslinks enter separable deletion and base substitution pathways.
    Richards S; Liu ST; Majumdar A; Liu JL; Nairn RS; Bernier M; Maher V; Seidman MM
    Nucleic Acids Res; 2005; 33(17):5382-93. PubMed ID: 16186129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene targeting via triple-helix formation.
    Casey BP; Glazer PM
    Prog Nucleic Acid Res Mol Biol; 2001; 67():163-92. PubMed ID: 11525382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-specific mutagenesis by triple helix-forming oligonucleotides containing a reactive nucleoside analog.
    Nagatsugi F; Sasaki S; Miller PS; Seidman MM
    Nucleic Acids Res; 2003 Mar; 31(6):e31. PubMed ID: 12626730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides.
    Rogers FA; Manoharan M; Rabinovitch P; Ward DC; Glazer PM
    Nucleic Acids Res; 2004; 32(22):6595-604. PubMed ID: 15602001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases.
    Rogers FA; Lloyd JA; Tiwari MK
    Artif DNA PNA XNA; 2014; 5(1):e27792. PubMed ID: 25483840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transplatin-conjugated triplex-forming oligonucleotides form adducts with both strands of DNA.
    Campbell MA; Miller PS
    Bioconjug Chem; 2009 Dec; 20(12):2222-30. PubMed ID: 19950917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potassium-resistant triple helix formation and improved intracellular gene targeting by oligodeoxyribonucleotides containing 7-deazaxanthine.
    Faruqi AF; Krawczyk SH; Matteucci MD; Glazer PM
    Nucleic Acids Res; 1997 Feb; 25(3):633-40. PubMed ID: 9016606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of triple helix forming oligonucleotides to sites in gene promoters.
    Durland RH; Kessler DJ; Gunnell S; Duvic M; Pettitt BM; Hogan ME
    Biochemistry; 1991 Sep; 30(38):9246-55. PubMed ID: 1892832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. (A,G)-oligonucleotides form extraordinary stable triple helices with a critical R.Y sequence of the murine c-Ki-ras promoter and inhibit transcription in transfected NIH 3T3 cells.
    Alunni-Fabbroni M; Pirulli D; Manzini G; Xodo LE
    Biochemistry; 1996 Dec; 35(50):16361-9. PubMed ID: 8973212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH.
    Torigoe H; Nakagawa O; Imanishi T; Obika S; Sasaki K
    Biochimie; 2012 Apr; 94(4):1032-40. PubMed ID: 22245184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intercalator conjugates of pyrimidine locked nucleic acid-modified triplex-forming oligonucleotides: improving DNA binding properties and reaching cellular activities.
    Brunet E; Corgnali M; Perrouault L; Roig V; Asseline U; Sørensen MD; Babu BR; Wengel J; Giovannangeli C
    Nucleic Acids Res; 2005; 33(13):4223-34. PubMed ID: 16049028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-affinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene.
    Vasquez KM; Wensel TG; Hogan ME; Wilson JH
    Biochemistry; 1995 May; 34(21):7243-51. PubMed ID: 7766635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triplex formation by psoralen-conjugated chimeric oligonucleoside methylphosphonates.
    Cassidy RA; Kondo NS; Miller PS
    Biochemistry; 2000 Jul; 39(29):8683-91. PubMed ID: 10913277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting bcl-2 by triplex-forming oligonucleotide--a promising carrier for gene-radiotherapy.
    Shen C; Rattat D; Buck A; Mehrke G; Polat B; Ribbert H; Schirrmeister H; Mahren B; Matuschek C; Reske SN
    Cancer Biother Radiopharm; 2003 Feb; 18(1):17-26. PubMed ID: 12667305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triplex-forming oligonucleotides as potential tools for modulation of gene expression.
    Rogers FA; Lloyd JA; Glazer PM
    Curr Med Chem Anticancer Agents; 2005 Jul; 5(4):319-26. PubMed ID: 16101484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triplex forming ability of oligonucleotides containing 2'-O-methyl-2-thiouridine or 2-thiothymidine.
    Okamoto I; Seio K; Sekine M
    Bioorg Med Chem Lett; 2006 Jun; 16(12):3334-6. PubMed ID: 16631365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted genome modification via triple helix formation.
    Ricciardi AS; McNeer NA; Anandalingam KK; Saltzman WM; Glazer PM
    Methods Mol Biol; 2014; 1176():89-106. PubMed ID: 25030921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide.
    Chan PP; Lin M; Faruqi AF; Powell J; Seidman MM; Glazer PM
    J Biol Chem; 1999 Apr; 274(17):11541-8. PubMed ID: 10206960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.