These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12059012)

  • 1. Production and evaluation of biodegradable composites based on PHB-PHV copolymer.
    Chen LJ; Wang M
    Biomaterials; 2002 Jul; 23(13):2631-9. PubMed ID: 12059012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation.
    Shishatskaya EI; Khlusov IA; Volova TG
    J Biomater Sci Polym Ed; 2006; 17(5):481-98. PubMed ID: 16800151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation.
    Lin FH; Chen TM; Lin CP; Lee CJ
    Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications.
    Ulum MF; Arafat A; Noviana D; Yusop AH; Nasution AK; Abdul Kadir MR; Hermawan H
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():336-44. PubMed ID: 24433920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: properties and biocompatibility assessment.
    Lopes PP; Garcia MP; Fernandes MH; Fernandes MH
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1289-99. PubMed ID: 23827574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India.
    Kulkarni SO; Kanekar PP; Nilegaonkar SS; Sarnaik SS; Jog JP
    Bioresour Technol; 2010 Dec; 101(24):9765-71. PubMed ID: 20713308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering.
    Wang M; Chen LJ; Ni J; Weng J; Yue CY
    J Mater Sci Mater Med; 2001; 12(10-12):855-60. PubMed ID: 15348329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering.
    García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR
    Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites.
    Lim JS; Park KI; Chung GS; Kim JH
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2131-7. PubMed ID: 23498241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass.
    Misra SK; Nazhat SN; Valappil SP; Moshrefi-Torbati M; Wood RJ; Roy I; Boccaccini AR
    Biomacromolecules; 2007 Jul; 8(7):2112-9. PubMed ID: 17530893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing and properties of porous poly(L-lactide)/bioactive glass composites.
    Zhang K; Wang Y; Hillmyer MA; Francis LF
    Biomaterials; 2004 Jun; 25(13):2489-500. PubMed ID: 14751733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics.
    Ni S; Chang J; Chou L
    J Mater Sci Mater Med; 2008 Jan; 19(1):359-67. PubMed ID: 17607509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. α-Tricalcium phosphate: synthesis, properties and biomedical applications.
    Carrodeguas RG; De Aza S
    Acta Biomater; 2011 Oct; 7(10):3536-46. PubMed ID: 21712105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.