These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12059241)

  • 41. Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell.
    Charlier C; Alderson TR; Courtney JM; Ying J; Anfinrud P; Bax A
    Proc Natl Acad Sci U S A; 2018 May; 115(18):E4169-E4178. PubMed ID: 29666248
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transient enzyme-substrate recognition monitored by real-time NMR.
    Haupt C; Patzschke R; Weininger U; Gröger S; Kovermann M; Balbach J
    J Am Chem Soc; 2011 Jul; 133(29):11154-62. PubMed ID: 21661729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analyzing protein folding cooperativity by differential scanning calorimetry and NMR spectroscopy.
    Farber P; Darmawan H; Sprules T; Mittermaier A
    J Am Chem Soc; 2010 May; 132(17):6214-22. PubMed ID: 20377225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NMR studies of partially folded molten-globule states.
    Redfield C
    Methods Mol Biol; 2004; 278():233-54. PubMed ID: 15317999
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct NMR measurement of folding kinetics of a trimeric peptide.
    Liu X; Siegel DL; Fan P; Brodsky B; Baum J
    Biochemistry; 1996 Apr; 35(14):4306-13. PubMed ID: 8605179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An improved ultrafast 2D NMR experiment: towards atom-resolved real-time studies of protein kinetics at multi-Hz rates.
    Gal M; Kern T; Schanda P; Frydman L; Brutscher B
    J Biomol NMR; 2009 Jan; 43(1):1-10. PubMed ID: 18982409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diffusion NMR spectroscopy: folding and aggregation of domains in p53.
    Dehner A; Kessler H
    Chembiochem; 2005 Sep; 6(9):1550-65. PubMed ID: 16138303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.
    Nishimura C; Dyson HJ; Wright PE
    J Mol Biol; 2006 Jan; 355(1):139-56. PubMed ID: 16300787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Loop length, intramolecular diffusion and protein folding.
    Viguera AR; Serrano L
    Nat Struct Biol; 1997 Nov; 4(11):939-46. PubMed ID: 9360611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring protein unfolding transitions by NMR-spectroscopy.
    Dreydoppel M; Balbach J; Weininger U
    J Biomol NMR; 2022 Apr; 76(1-2):3-15. PubMed ID: 34984658
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding.
    Arcus VL; Vuilleumier S; Freund SM; Bycroft M; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):305-21. PubMed ID: 7490750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alanine check points in HNN and HN(C)N spectra.
    Chatterjee A; Kumar A; Hosur RV
    J Magn Reson; 2006 Jul; 181(1):21-8. PubMed ID: 16574444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the NMR analysis of pKa values in the unfolded state of proteins by extrapolation to zero denaturant.
    Quijada J; López G; Versace R; Ramírez L; Tasayco ML
    Biophys Chem; 2007 Sep; 129(2-3):242-50. PubMed ID: 17611012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noncooperative Formation of the off-pathway molten globule during folding of the alpha-beta parallel protein apoflavodoxin.
    Nabuurs SM; Westphal AH; van Mierlo CP
    J Am Chem Soc; 2009 Feb; 131(7):2739-46. PubMed ID: 19170491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMR structural study of two-disulfide variant of hen lysozyme: 2SS[6-127, 30-115]--a disulfide intermediate with a partly unfolded structure.
    Noda Y; Yokota A; Horii D; Tominaga T; Tanisaka Y; Tachibana H; Segawa S
    Biochemistry; 2002 Feb; 41(7):2130-9. PubMed ID: 11841203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Native and non-native secondary structure and dynamics in the pH 4 intermediate of apomyoglobin.
    Eliezer D; Chung J; Dyson HJ; Wright PE
    Biochemistry; 2000 Mar; 39(11):2894-901. PubMed ID: 10715109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR.
    Nishimura C
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(1):10-27. PubMed ID: 28077807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-specific experiments on folding/unfolding of Jun coiled coils: thermodynamic and kinetic parameters from spin inversion transfer nuclear magnetic resonance at leucine-18.
    d'Avignon DA; Bretthorst GL; Holtzer ME; Schwarz KA; Angeletti RH; Mints L; Holtzer A
    Biopolymers; 2006 Oct; 83(3):255-67. PubMed ID: 16767740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins.
    Bermel W; Bertini I; Felli IC; Lee YM; Luchinat C; Pierattelli R
    J Am Chem Soc; 2006 Mar; 128(12):3918-9. PubMed ID: 16551093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.