These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12059615)

  • 1. Separation mechanisms underlying vector chromatography in microlithographic arrays.
    Dorfman KD; Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):052103. PubMed ID: 12059615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Vector Chromatography": Modeling Micropatterned Separation Devices.
    Dorfman KD; Brenner H
    J Colloid Interface Sci; 2001 Jun; 238(2):390-413. PubMed ID: 11374936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of suspended particles by arrays of obstacles in microfluidic devices.
    Li Z; Drazer G
    Phys Rev Lett; 2007 Feb; 98(5):050602. PubMed ID: 17358839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Taylor-Aris dispersion in discrete spatially periodic networks: microfluidic applications.
    Dorfman KD; Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021103. PubMed ID: 11863499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity driven deterministic lateral displacement for particle separation in microfluidic devices.
    Devendra R; Drazer G
    Anal Chem; 2012 Dec; 84(24):10621-7. PubMed ID: 23137317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-propelled particle transport in regular arrays of rigid asymmetric obstacles.
    Potiguar FQ; Farias GA; Ferreira WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012307. PubMed ID: 25122303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and collision dynamics in periodic asymmetric obstacle arrays: rational design of microfluidic rare-cell immunocapture devices.
    Gleghorn JP; Smith JP; Kirby BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032136. PubMed ID: 24125242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of suspended particles in microfluidic systems by directional locking in periodic fields.
    Herrmann J; Karweit M; Drazer G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061404. PubMed ID: 19658506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation.
    Ai BQ; Wu JC
    J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driven Brownian transport through arrays of symmetric obstacles.
    Ghosh PK; Hänggi P; Marchesoni F; Martens S; Nori F; Schimansky-Geier L; Schmid G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011101. PubMed ID: 22400506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets.
    Matthias S; Müller F
    Nature; 2003 Jul; 424(6944):53-7. PubMed ID: 12840755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study.
    Holtzer GL; Velegol D
    Langmuir; 2005 Oct; 21(22):10074-81. PubMed ID: 16229529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional locking in deterministic lateral-displacement microfluidic separation systems.
    Risbud SR; Drazer G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012302. PubMed ID: 25122298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable hydrodynamic chromatography of microparticles localized in short microchannels.
    Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E
    Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brownian escape and force-driven transport through entropic barriers: Particle size effect.
    Cheng KL; Sheng YJ; Tsao HK
    J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and separation of circularly moving particles in asymmetrically patterned arrays.
    Reichhardt C; Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042306. PubMed ID: 24229171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian transport of finite size particles in a periodic channel coexisting with an energetic potential.
    Chen Q; Ai BQ; Xiong JW
    Chaos; 2014 Sep; 24(3):033119. PubMed ID: 25273199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective diffusivity through arrays of obstacles under zero-mean periodic driving forces.
    Alvarez-Ramirez J; Dagdug L; Valdes-Parada FJ
    J Chem Phys; 2012 Oct; 137(15):154109. PubMed ID: 23083150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional motion of brownian particles induced by a periodic asymmetric potential.
    Rousselet J; Salome L; Ajdari A; Prost J
    Nature; 1994 Aug; 370(6489):446-8. PubMed ID: 8047163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.