These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fractality in complex networks: critical and supercritical skeletons. Kim JS; Goh KI; Salvi G; Oh E; Kahng B; Kim D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016110. PubMed ID: 17358227 [TBL] [Abstract][Full Text] [Related]
4. Robustness of the in-degree exponent for the World-Wide Web. Kahng B; Park Y; Jeong H Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046107. PubMed ID: 12443259 [TBL] [Abstract][Full Text] [Related]
6. Universal behavior of load distribution in scale-free networks. Goh KI; Kahng B; Kim D Phys Rev Lett; 2001 Dec; 87(27 Pt 1):278701. PubMed ID: 11800921 [TBL] [Abstract][Full Text] [Related]
7. Anomalous percolation properties of growing networks. Dorogovtsev SN; Mendes JF; Samukhin AN Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066110. PubMed ID: 11736239 [TBL] [Abstract][Full Text] [Related]
8. Robustness of the avalanche dynamics in data-packet transport on scale-free networks. Lee EJ; Goh KI; Kahng B; Kim D Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056108. PubMed ID: 16089603 [TBL] [Abstract][Full Text] [Related]
9. Stochastic growth tree networks with an identical fractal dimension: Construction and mean hitting time for random walks. Ma F; Luo X; Wang P Chaos; 2022 Jun; 32(6):063123. PubMed ID: 35778122 [TBL] [Abstract][Full Text] [Related]
10. Influences of degree inhomogeneity on average path length and random walks in disassortative scale-free networks. Zhang Z; Zhang Y; Zhou S; Yin M; Guan J J Math Phys; 2009 Mar; 50(3):033514. PubMed ID: 32255840 [TBL] [Abstract][Full Text] [Related]
11. Neighbor network in a polydisperse hard-disk fluid: degree distribution and assortativity. Chremos A; Camp PJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056108. PubMed ID: 18233719 [TBL] [Abstract][Full Text] [Related]
12. Characterizing general scale-free networks by vertex-degree sequences. Xiao W; Lai Z; Chen G Chaos; 2015 Nov; 25(11):113111. PubMed ID: 26627571 [TBL] [Abstract][Full Text] [Related]
13. Exactly solvable scale-free network model. Iguchi K; Yamada H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036144. PubMed ID: 15903530 [TBL] [Abstract][Full Text] [Related]
14. Scale-free networks with tunable degree-distribution exponents. Lee HY; Chan HY; Hui PM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):067102. PubMed ID: 15244781 [TBL] [Abstract][Full Text] [Related]
15. Dynamic pattern evolution on scale-free networks. Zhou H; Lipowsky R Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10052-7. PubMed ID: 16006533 [TBL] [Abstract][Full Text] [Related]
17. Tomography of scale-free networks and shortest path trees. Kalisky T; Cohen R; Mokryn O; Dolev D; Shavitt Y; Havlin S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066108. PubMed ID: 17280122 [TBL] [Abstract][Full Text] [Related]
18. Inverted Berezinskii-Kosterlitz-Thouless singularity and high-temperature algebraic order in an Ising model on a scale-free hierarchical-lattice small-world network. Hinczewski M; Nihat Berker A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066126. PubMed ID: 16906933 [TBL] [Abstract][Full Text] [Related]
19. Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture. Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046107. PubMed ID: 15169069 [TBL] [Abstract][Full Text] [Related]
20. Power-law tail probabilities of drainage areas in river basins. Veitzer SA; Troutman BM; Gupta VK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016123. PubMed ID: 12935216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]