These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 12059684)

  • 1. Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators.
    Zheng Z; Wang X; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056211. PubMed ID: 12059684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy balance in feedback synchronization of chaotic systems.
    Sarasola C; Torrealdea FJ; D'Anjou A; Moujahid A; Graña M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011606. PubMed ID: 14995632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization regimes in conjugate coupled chaotic oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Chaos; 2009 Sep; 19(3):033143. PubMed ID: 19792023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems.
    Yan Z
    Chaos; 2005 Mar; 15(1):13101. PubMed ID: 15836255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude death in coupled chaotic oscillators.
    Prasad A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056204. PubMed ID: 16383724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental observations of synchronization between two bidirectionally coupled physically dissimilar oscillators.
    Huang K; Sorrentino F; Hossein-Zadeh M
    Phys Rev E; 2020 Oct; 102(4-1):042215. PubMed ID: 33212708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators.
    Koronovskii AA; Moskalenko OI; Pivovarov AA; Evstifeev EV
    Chaos; 2020 Aug; 30(8):083133. PubMed ID: 32872830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators.
    Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise enhanced phase synchronization and coherence resonance in sets of chaotic oscillators with weak global coupling.
    Kiss IZ; Zhai Y; Hudson JL; Zhou C; Kurths J
    Chaos; 2003 Mar; 13(1):267-78. PubMed ID: 12675433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering versus non-clustering phase synchronizations.
    Liu S; Zhan M
    Chaos; 2014 Mar; 24(1):013104. PubMed ID: 24697366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing synchrony in chaotic oscillators by dynamic relaying.
    Banerjee R; Ghosh D; Padmanaban E; Ramaswamy R; Pecora LM; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):027201. PubMed ID: 22463360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering generalized synchronization in chaotic oscillators.
    Roy PK; Hens C; Grosu I; Dana SK
    Chaos; 2011 Mar; 21(1):013106. PubMed ID: 21456820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of mixed coupling on relay-coupled Rössler and Lorenz oscillators.
    Sharma A; Shrimali MD; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062907. PubMed ID: 25615164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent clusters in lattices of coupled nonidentical chaotic systems.
    Belykh I; Belykh V; Nevidin K; Hasler M
    Chaos; 2003 Mar; 13(1):165-78. PubMed ID: 12675423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized synchronization: a modified system approach.
    Hramov AE; Koronovskii AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):067201. PubMed ID: 16089917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering synchronization of chaotic oscillators using controller based coupling design.
    Padmanaban E; Hens C; Dana SK
    Chaos; 2011 Mar; 21(1):013110. PubMed ID: 21456824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition to intermittent chaotic synchronization.
    Zhao L; Lai YC; Shih CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036212. PubMed ID: 16241553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticipating synchrony in dynamical systems using information theory.
    Ghosh A; Pawar SA; Sujith RI
    Chaos; 2022 Mar; 32(3):031103. PubMed ID: 35364827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaying phase synchrony in chaotic oscillator chains.
    Agrawal M; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056205. PubMed ID: 22181482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization in counter-rotating oscillators.
    Bhowmick SK; Ghosh D; Dana SK
    Chaos; 2011 Sep; 21(3):033118. PubMed ID: 21974653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.