These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12059699)

  • 1. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Zhou Y; Zimmerman GB; Burke EW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056303. PubMed ID: 12059699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buoyancy-drag mix model obtained by multifluid interpenetration equations.
    Cheng B; Scannapieco AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046310. PubMed ID: 16383536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a turbulent-mix model for variable-density and compressible flows.
    Banerjee A; Gore RA; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046309. PubMed ID: 21230392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing.
    Morgan BE; Schilling O; Hartland TA
    Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing.
    Abarzhi SI; Bhowmick AK; Naveh A; Pandian A; Swisher NC; Stellingwerf RF; Arnett WD
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18184-18192. PubMed ID: 30478062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II.
    Abarzhi SI; Gauthier S; Sreenivasan KR
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meskov instabilities.
    Morgan BE; Wickett ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043002. PubMed ID: 25974575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onset of turbulence in accelerated high-Reynolds-number flow.
    Zhou Y; Robey HF; Buckingham AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids.
    Rollin B; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations.
    Tritschler VK; Zubel M; Hickel S; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts.
    Cheng B; Glimm J; Sharp DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Mikaelian KO
    Phys Rev E; 2019 Feb; 99(2-1):023112. PubMed ID: 30934361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rayleigh-Taylor and Richtmyer-Meshkov instabilities in multilayer fluids with surface tension.
    Mikaelian KO
    Phys Rev A; 1990 Dec; 42(12):7211-7225. PubMed ID: 9904036
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.