BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 12060738)

  • 1. Shotgun identification of protein modifications from protein complexes and lens tissue.
    MacCoss MJ; McDonald WH; Saraf A; Sadygov R; Clark JM; Tasto JJ; Gould KL; Wolters D; Washburn M; Weiss A; Clark JI; Yates JR
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):7900-5. PubMed ID: 12060738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach.
    Chiou SH; Huang CH; Lee IL; Wang YT; Liu NY; Tsay YG; Chen YJ
    Mol Vis; 2010 Feb; 16():294-302. PubMed ID: 20182557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens.
    Yanshole LV; Cherepanov IV; Snytnikova OA; Yanshole VV; Sagdeev RZ; Tsentalovich YP
    Mol Vis; 2013; 19():2196-208. PubMed ID: 24227915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo acetylation identified at lysine 70 of human lens alphaA-crystallin.
    Lin PP; Barry RC; Smith DL; Smith JB
    Protein Sci; 1998 Jun; 7(6):1451-7. PubMed ID: 9655350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary structure of rabbit lens alpha-crystallins.
    Parveen R; Smith JB; Sun Y; Smith DL
    J Protein Chem; 1993 Feb; 12(1):93-101. PubMed ID: 8427639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.
    Ueda Y; Duncan MK; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):205-15. PubMed ID: 11773033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map.
    Lampi KJ; Shih M; Ueda Y; Shearer TR; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):216-24. PubMed ID: 11773034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of the water-insoluble human lens alpha-crystallins.
    Lund AL; Smith JB; Smith DL
    Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y; Yi L; Yan G; Fang Y; Jang Y; Wu X; Zhou X; Wei L
    Curr Eye Res; 2010 Jul; 35(7):620-30. PubMed ID: 20597648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Proteome of Cataract Markers: Focus on Crystallins.
    Zhang K; Zhu X; Lu Y
    Adv Clin Chem; 2018; 86():179-210. PubMed ID: 30144840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses.
    Fujii N; Sakaue H; Sasaki H; Fujii N
    J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility?
    Wilmarth PA; Tanner S; Dasari S; Nagalla SR; Riviere MA; Bafna V; Pevzner PA; David LL
    J Proteome Res; 2006 Oct; 5(10):2554-66. PubMed ID: 17022627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions.
    Yan H; Willis AC; Harding JJ
    Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Chatake T; Fujii N
    Biochem Biophys Res Commun; 2015 Oct; 466(4):622-8. PubMed ID: 26385181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry.
    Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB
    Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo modification of the C-terminal lysine of human lens alphaB-crystallin.
    Lin P; Smith DL; Smith JB
    Exp Eye Res; 1997 Nov; 65(5):673-80. PubMed ID: 9367647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract.
    Garner B; Shaw DC; Lindner RA; Carver JA; Truscott RJ
    Biochim Biophys Acta; 2000 Feb; 1476(2):265-78. PubMed ID: 10669791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.