These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 12060738)

  • 21. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Fujii N
    Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deamidation in human gamma S-crystallin from cataractous lenses is influenced by surface exposure.
    Lapko VN; Purkiss AG; Smith DL; Smith JB
    Biochemistry; 2002 Jul; 41(27):8638-48. PubMed ID: 12093281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function.
    Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N
    FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses.
    Hains PG; Truscott RJ
    J Proteome Res; 2007 Oct; 6(10):3935-43. PubMed ID: 17824632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Posttranslational modifications in lens fiber connexins identified by off-line-HPLC MALDI-quadrupole time-of-flight mass spectrometry.
    Shearer D; Ens W; Standing K; Valdimarsson G
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1553-62. PubMed ID: 18385075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shotgun proteomic analysis of S-thiolation sites of guinea pig lens nuclear crystallins following oxidative stress in vivo.
    Giblin FJ; David LL; Wilmarth PA; Leverenz VR; Simpanya MF
    Mol Vis; 2013; 19():267-80. PubMed ID: 23401655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometry.
    Smith JB; Sun Y; Smith DL; Green B
    Protein Sci; 1992 May; 1(5):601-8. PubMed ID: 1304359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P
    Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass spectrometry-based proteomics approaches applied in cataract research.
    Kyselova Z
    Mass Spectrom Rev; 2011; 30(6):1173-84. PubMed ID: 22031278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses.
    Huang CH; Wang YT; Tsai CF; Chen YJ; Lee JS; Chiou SH
    Mol Vis; 2011 Jan; 17():186-98. PubMed ID: 21264232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiolation of the gammaB-crystallins in intact bovine lens exposed to hydrogen peroxide.
    Hanson SR; Chen AA; Smith JB; Lou MF
    J Biol Chem; 1999 Feb; 274(8):4735-42. PubMed ID: 9988710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes.
    Su SP; Song X; Xavier D; Aquilina JA
    Proteins; 2015 Oct; 83(10):1878-86. PubMed ID: 26238763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L; Liu D; Liu P; Yu Y
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence analysis of lens beta-crystallins suggests involvement of calpain in cataract formation.
    David LL; Shearer TR; Shih M
    J Biol Chem; 1993 Jan; 268(3):1937-40. PubMed ID: 8420967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The possible role of alpha-crystallins in human senile cataractogenesis.
    Takemoto L; Boyle D
    Int J Biol Macromol; 1998; 22(3-4):331-7. PubMed ID: 9650088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of post-translational modifications by blind search of mass spectra.
    Tsur D; Tanner S; Zandi E; Bafna V; Pevzner PA
    Nat Biotechnol; 2005 Dec; 23(12):1562-7. PubMed ID: 16311586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Posttranslational modification of human alphaA-crystallin: correlation with electrophoretic migration.
    Colvis C; Garland D
    Arch Biochem Biophys; 2002 Jan; 397(2):319-23. PubMed ID: 11795889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92.
    Lapko VN; Smith DL; Smith JB
    Protein Sci; 2001 Jun; 10(6):1130-6. PubMed ID: 11369851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of possible sites for posttranslational modifications in human gamma crystallins: effect of glycation on the structure of human gamma-B-crystallin as analyzed by molecular modeling.
    Salim A; Bano A; Zaidi ZH
    Proteins; 2003 Nov; 53(2):162-73. PubMed ID: 14517968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.