BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12061561)

  • 1. Prediction of the retention in reversed-phase liquid chromatography using solute-mobile phase-stationary phase polarity parameters.
    Torres-Lapasió JR; García-Alvarez-Coque MC; Rosés M; Bosch E
    J Chromatogr A; 2002 Apr; 955(1):19-34. PubMed ID: 12061561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model.
    Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E
    J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention prediction in ternary solvent reversed-phase liquid chromatography systems based on the variation of retention with binary mobile phase composition.
    Pappa-Louisi A; Nikitas P; Karageorgaki M
    J Chromatogr A; 2005 Oct; 1091(1-2):21-31. PubMed ID: 16395789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarity parameters of the Symmetry C18 and Chromolith Performance RP-18 monolithic chromatographic columns.
    Izquierdo P; Rosés M; Bosch E
    J Chromatogr A; 2006 Feb; 1107(1-2):96-103. PubMed ID: 16384576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.
    Torres-Lapasió JR; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1166(1-2):85-96. PubMed ID: 17720177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of calibration compounds for selectivity evaluation of siloxane-bonded silica columns for reversed-phase liquid chromatography by the solvation parameter model.
    Poole CF
    J Chromatogr A; 2020 Dec; 1633():461652. PubMed ID: 33161359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretive optimisation strategy applied to the isocratic separation of phenols by reversed-phase liquid chromatography with acetonitrile-water and methanol-water mobile phases.
    Torres-Lapasió JR; Rosés M; Bosch E; García-Alvarez-Coque MC
    J Chromatogr A; 2000 Jul; 886(1-2):31-46. PubMed ID: 10950273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the hydrophobicity of organic compounds measured as logP(o/w) through a new chromatographic method.
    Pallicer JM; Pous-Torres S; Sales J; Rosés M; Ràfols C; Bosch E
    J Chromatogr A; 2010 Apr; 1217(18):3026-37. PubMed ID: 20338568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention in reversed-phase liquid chromatography: solvatochromic investigation of homologous alcohol-water binary mobile phases.
    Michels JJ; Dorsey JG
    J Chromatogr; 1988 Dec; 457():85-98. PubMed ID: 3243892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the solvent strength parameter (linear solvent strength model) for isocratic separations in reversed-phase liquid chromatography.
    Poole CF; Atapattu SN
    J Chromatogr A; 2022 Jul; 1675():463153. PubMed ID: 35609444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention characteristics of an immobilized artificial membrane column in reversed-phase liquid chromatography.
    Lepont C; Poole CF
    J Chromatogr A; 2002 Feb; 946(1-2):107-24. PubMed ID: 11873960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micellar liquid chromatography: suitable technique for screening analysis.
    Ruiz-Angel MJ; Caballero RD; Simó-Alfonso EF; García-Alvarez-Coque MC
    J Chromatogr A; 2002 Feb; 947(1):31-45. PubMed ID: 11873996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited.
    Jandera P; Hájek T; Šromová Z
    J Chromatogr A; 2018 Mar; 1543():48-57. PubMed ID: 29486886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of reversed-phase liquid chromatography for determining the lipophilicity of alpha-aryl-N-cyclopropylnitrones.
    Balogh GT; Szántó Z; Forrai E; Gyorffy W; Lopata A
    J Pharm Biomed Anal; 2005 Oct; 39(5):1057-62. PubMed ID: 16019180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention Models on Core-Shell Columns.
    Jandera P; Hájek T; Růžičková M
    J AOAC Int; 2017 Nov; 100(6):1636-1646. PubMed ID: 28707622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of linear and nonlinear models for retention prediction in liquid chromatography.
    Gilar M; Hill J; McDonald TS; Gritti F
    J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate determination of log k'w in reversed-phase liquid chromatography. Implications for quantitative structure-retention relationships.
    Hsieh MM; Dorsey JG
    J Chromatogr; 1993 Feb; 631(1-2):63-78. PubMed ID: 8450023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversed phase liquid chromatography with UV absorbance and flame ionization detection using a water mobile phase and a cyano propyl stationary phase Analysis of alcohols and chlorinated hydrocarbons.
    Quigley WW; Ecker ST; Vahey PG; Synovec RE
    Talanta; 1999 Oct; 50(3):569-76. PubMed ID: 18967746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.