These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12061717)

  • 41. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.
    Wei Q; Chen J; Mi J; Zhang J; Ruan K; Wu J
    Chemistry; 2016 Jul; 22(28):9556-64. PubMed ID: 27276173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The set of triple-resonance sequences with a multiple quantum coherence evolution period.
    Koźmiński W; Zhukov I
    J Magn Reson; 2004 Dec; 171(2):338-44. PubMed ID: 15546761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intraresidual HNCA: an experiment for correlating only intraresidual backbone resonances.
    Permi P
    J Biomol NMR; 2002 Jul; 23(3):201-9. PubMed ID: 12238592
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 13Cα CEST experiment on uniformly 13C-labeled proteins.
    Zhou Y; Yang D
    J Biomol NMR; 2015 Feb; 61(2):89-94. PubMed ID: 25465387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous CT-13C and VT-15N chemical shift labelling: application to 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH.
    Uhrín D; Bramham J; Winder SJ; Barlow PN
    J Biomol NMR; 2000 Nov; 18(3):253-9. PubMed ID: 11142515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interference between cross-correlated relaxation and the measurement of scalar and dipolar couplings by Quantitative J.
    de Alba E; Tjandra N
    J Biomol NMR; 2006 May; 35(1):1-16. PubMed ID: 16791736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
    Zech SG; Wand AJ; McDermott AE
    J Am Chem Soc; 2005 Jun; 127(24):8618-26. PubMed ID: 15954766
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measurement of the protein backbone dihedral angle phi based on quantification of remote CSA/DD interference in inter-residue 13C'(i - 1)-13Calpha(i) multiple-quantum coherences.
    Kloiber K; Konrat R
    J Biomol NMR; 2000 Jul; 17(3):265-8. PubMed ID: 10959633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of the NMR spin-spin coupling constants across the hydrogen bonds in ubiquitin: the nature of the hydrogen bond as reflected by the coupling mechanism.
    Tuttle T; Kraka E; Wu A; Cremer D
    J Am Chem Soc; 2004 Apr; 126(16):5093-107. PubMed ID: 15099092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of substitution pattern on 1H, 13C NMR chemical shifts and 1J(CH) coupling constants in heparin derivatives.
    Yates EA; Santini F; De Cristofano B; Payre N; Cosentino C; Guerrini M; Naggi A; Torri G; Hricovini M
    Carbohydr Res; 2000 Oct; 329(1):239-47. PubMed ID: 11086706
    [TBL] [Abstract][Full Text] [Related]  

  • 51. More line narrowing in TROSY by decoupling of long-range couplings: shift correlation and 1JNC' coupling constant measurements.
    Kövér KE; Batta G
    J Magn Reson; 2004 Oct; 170(2):184-90. PubMed ID: 15388079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids.
    Lange A; Luca S; Baldus M
    J Am Chem Soc; 2002 Aug; 124(33):9704-5. PubMed ID: 12175218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimates of phi and psi torsion angles in proteins from one-, two- and three-bond nuclear spin-spin couplings: application to staphylococcal nuclease.
    Edison AS; Weinhold F; Westler WM; Markley JL
    J Biomol NMR; 1994 Jul; 4(4):543-51. PubMed ID: 8075540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous measurement of N-H and Calpha-Halpha coupling constants in proteins.
    Pantoja-Uceda D; Santoro J
    Magn Reson Chem; 2010 Jan; 48(1):20-4. PubMed ID: 19856384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of dihedral Psi angles in large proteins by combining NH(N)/C(alpha)H(alpha) dipole/dipole cross-correlation and chemical shifts.
    Loth K; Abergel D; Pelupessy P; Delarue M; Lopes P; Ouazzani J; Duclert-Savatier N; Nilges M; Bodenhausen G; Stoven V
    Proteins; 2006 Sep; 64(4):931-9. PubMed ID: 16786593
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Primary and secondary structure dependence of peptide flexibility assessed by fluorescence-based measurement of end-to-end collision rates.
    Huang F; Hudgins RR; Nau WM
    J Am Chem Soc; 2004 Dec; 126(50):16665-75. PubMed ID: 15600373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 13C direct detected COCO-TOCSY: a tool for sequence specific assignment and structure determination in protonless NMR experiments.
    Balayssac S; Jiménez B; Piccioli M
    J Magn Reson; 2006 Oct; 182(2):325-9. PubMed ID: 16844393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of residual dipolar couplings from 1Halpha to 13Calpha and 15N using a simple HNCA-based experiment.
    Permi P
    J Biomol NMR; 2003 Dec; 27(4):341-9. PubMed ID: 14512731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.