These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 12061797)
1. Rapid release of Mg(2+) from liver mitochondria by nonesterified long-chain fatty acids in alkaline media. Schönfeld P; Schüttig R; Wojtczak L Arch Biochem Biophys; 2002 Jul; 403(1):16-24. PubMed ID: 12061797 [TBL] [Abstract][Full Text] [Related]
2. Stimulation of potassium cycling in mitochondria by long-chain fatty acids. Schönfeld P; Gerke S; Bohnensack R; Wojtczak L Biochim Biophys Acta; 2003 Jun; 1604(2):125-33. PubMed ID: 12765769 [TBL] [Abstract][Full Text] [Related]
3. An attempt to quantify K+ fluxes in rat liver mitochondria. Belyaeva EA; Wojtczak L Biochem Mol Biol Int; 1994 May; 33(1):165-75. PubMed ID: 8081206 [TBL] [Abstract][Full Text] [Related]
4. Activation of ion-conducting pathways in the inner mitochondrial membrane - an unrecognized activity of fatty acid? Schönfeld P; Schlüter T; Schüttig R; Bohnensack R FEBS Lett; 2001 Feb; 491(1-2):45-9. PubMed ID: 11226416 [TBL] [Abstract][Full Text] [Related]
5. Fatty acids induce chloride permeation in rat liver mitochondria by activation of the inner membrane anion channel (IMAC). Schönfeld P; Sayeed I; Bohnensack R; Siemen D J Bioenerg Biomembr; 2004 Jun; 36(3):241-8. PubMed ID: 15337854 [TBL] [Abstract][Full Text] [Related]
6. Role of the ADP/ATP and aspartate/glutamate antiporters in the uncoupling effect of fatty acids, lauryl sulfate, and 2, 4-dinitrophenol in liver mitochondria. Samartsev VN; Markova OV; Zeldi IP; Smirnov AV Biochemistry (Mosc); 1999 Aug; 64(8):901-11. PubMed ID: 10498806 [TBL] [Abstract][Full Text] [Related]
7. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. Bradshaw PC; Pfeiffer DR BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565 [TBL] [Abstract][Full Text] [Related]
8. Long-chain fatty acid-promoted swelling of mitochondria: further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. Schönfeld P; Wieckowski MR; Wojtczak L FEBS Lett; 2000 Apr; 471(1):108-12. PubMed ID: 10760523 [TBL] [Abstract][Full Text] [Related]
9. Free fatty acid effects on mitochondrial permeability: an overview. Sultan A; Sokolove PM Arch Biochem Biophys; 2001 Feb; 386(1):52-61. PubMed ID: 11361000 [TBL] [Abstract][Full Text] [Related]
10. [Simulation of the uncoupling activity of fatty acids with the participation of ADP/ATP and aspartate/glutamate antiporters in liver mitochondria]. Samartsev VN; Kozhina OV; Marchik EI Biofizika; 2012; 57(2):267-73. PubMed ID: 22594284 [TBL] [Abstract][Full Text] [Related]
11. Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force. Lee WK; Spielmann M; Bork U; Thévenod F Am J Physiol Cell Physiol; 2005 Sep; 289(3):C656-64. PubMed ID: 15843441 [TBL] [Abstract][Full Text] [Related]
12. [Respiration and ion permeability of the inner membrane in rat "sodium" liver mitochondria]. Korotkov SM; Glazunov VV; Nikitina EP Tsitologiia; 1997; 39(11):1046-54. PubMed ID: 9505347 [TBL] [Abstract][Full Text] [Related]
13. Brain mitochondrial swelling induced by arachidonic acid and other long chain free fatty acids. Hillered L; Chan PH J Neurosci Res; 1989 Oct; 24(2):247-50. PubMed ID: 2531232 [TBL] [Abstract][Full Text] [Related]
14. The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Markova OV; Bondarenko DI; Samartsev VN Biochemistry (Mosc); 1999 May; 64(5):565-70. PubMed ID: 10381619 [TBL] [Abstract][Full Text] [Related]
15. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents. Custódio JB; Cardoso CM; Santos MS; Almeida LM; Vicente JA; Fernandes MA Toxicology; 2009 May; 259(1-2):18-24. PubMed ID: 19428939 [TBL] [Abstract][Full Text] [Related]
16. Participation of endogenous fatty acids in Ca2+ release activation from mitochondria. Medvedev BI; Severina EP; Gogvadze VG; Chukhlova EA; Evtodienko YuV Gen Physiol Biophys; 1985 Dec; 4(6):549-56. PubMed ID: 4085784 [TBL] [Abstract][Full Text] [Related]
17. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III. Belyaeva EA; Glazunov VV; Korotkov SM Chem Biol Interact; 2004 Dec; 150(3):253-70. PubMed ID: 15560892 [TBL] [Abstract][Full Text] [Related]
18. [Cumene hydroperoxide changes the type of conductivity of the mitochondrial membrane for K+]. Novgorodov SA; Gudz' TI; Mor IuE; Goncharenko EN; Iaguzhinskiĭ LS Biokhimiia; 1989 Feb; 54(2):206-12. PubMed ID: 2742923 [TBL] [Abstract][Full Text] [Related]
19. [Oxidative phosphorylation uncoupling by fatty acids in liver and muscle mitochondria]. Mokhova EN; Starkov AA; Bobyleva VA Biokhimiia; 1993 Oct; 58(10):1513-22. PubMed ID: 8268296 [TBL] [Abstract][Full Text] [Related]
20. Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability. Fernandes MA; Santos MS; Moreno AJ; Duburs G; Oliveira CR; Vicente JA J Biochem Mol Toxicol; 2004; 18(3):162-9. PubMed ID: 15252873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]