These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties. Obata H; Muryoi N; Kawahara H; Yamade K; Nishikawa J Cryobiology; 1999 Mar; 38(2):131-9. PubMed ID: 10191036 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Gurian-Sherman D; Lindow SE Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution. Wang HY; Inada T; Funakoshi K; Lu SS Cryobiology; 2009 Aug; 59(1):83-9. PubMed ID: 19454281 [TBL] [Abstract][Full Text] [Related]
6. Agar plate freezing assay for the in situ selection of transformed ice nucleating bacteria. Anastassopoulos E Cryobiology; 2006 Oct; 53(2):276-8. PubMed ID: 16854406 [TBL] [Abstract][Full Text] [Related]
7. The effect of antifreeze proteins and poly(vinyl alcohol) on the nucleation of ice: a preliminary study. Holt CB Cryo Letters; 2003; 24(5):323-30. PubMed ID: 14566392 [TBL] [Abstract][Full Text] [Related]
8. Anomalous high activity of a subfraction of polyvinyl alcohol ice blocker. Wowk B Cryobiology; 2005 Jun; 50(3):325-31. PubMed ID: 15904915 [TBL] [Abstract][Full Text] [Related]
9. Supercooling ability in two populations of the land snail Helix pomatia (Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria. Nicolai A; Vernon P; Lee M; Ansart A; Charrier M Cryobiology; 2005 Feb; 50(1):48-57. PubMed ID: 15710369 [TBL] [Abstract][Full Text] [Related]
12. A new approach for freezing of aqueous solutions under active control of the nucleation temperature. Petersen A; Schneider H; Rau G; Glasmacher B Cryobiology; 2006 Oct; 53(2):248-57. PubMed ID: 16887112 [TBL] [Abstract][Full Text] [Related]
13. High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option. Hagedorn M; Peterson A; Mazur P; Kleinhans FW Cryobiology; 2004 Oct; 49(2):181-9. PubMed ID: 15351689 [TBL] [Abstract][Full Text] [Related]
14. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes. Guenther JF; Seki S; Kleinhans FW; Edashige K; Roberts DM; Mazur P Cryobiology; 2006 Jun; 52(3):401-16. PubMed ID: 16600207 [TBL] [Abstract][Full Text] [Related]
15. Prediction of ice content in biological model solutions when frozen under high pressure. Guignon B; Aparicio C; Otero L; Sanz PD Biotechnol Prog; 2009; 25(2):454-60. PubMed ID: 19294740 [TBL] [Abstract][Full Text] [Related]
16. Ice nucleation in emulsified aqueous solutions of antifreeze protein type III and poly(vinyl alcohol). Inada T; Koyama T; Goto F; Seto T J Phys Chem B; 2011 Jun; 115(24):7914-22. PubMed ID: 21619040 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Parody-Morreale A; Murphy KP; Di Cera E; Fall R; DeVries AL; Gill SJ Nature; 1988 Jun; 333(6175):782-3. PubMed ID: 3386720 [TBL] [Abstract][Full Text] [Related]
18. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions. Weng L; Tessier SN; Smith K; Edd JF; Stott SL; Toner M Langmuir; 2016 Sep; 32(36):9229-36. PubMed ID: 27495973 [TBL] [Abstract][Full Text] [Related]