BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12062042)

  • 1. Differential activation of individual subunits in heteromeric kainate receptors.
    Swanson GT; Green T; Sakai R; Contractor A; Che W; Kamiya H; Heinemann SF
    Neuron; 2002 May; 34(4):589-98. PubMed ID: 12062042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neurotoxin domoate causes long-lasting inhibition of the kainate receptor GluK5 subunit.
    Fisher JL
    Neuropharmacology; 2014 Oct; 85():9-17. PubMed ID: 24859608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological activity of C10-substituted analogs of the high-affinity kainate receptor agonist dysiherbaine.
    Lash-Van Wyhe LL; Postila PA; Tsubone K; Sasaki M; Pentikäinen OT; Sakai R; Swanson GT
    Neuropharmacology; 2010 Mar; 58(3):640-9. PubMed ID: 19962997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological properties of the potent epileptogenic amino acid dysiherbaine, a novel glutamate receptor agonist isolated from the marine sponge Dysidea herbacea.
    Sakai R; Swanson GT; Shimamoto K; Green T; Contractor A; Ghetti A; Tamura-Horikawa Y; Oiwa C; Kamiya H
    J Pharmacol Exp Ther; 2001 Feb; 296(2):650-8. PubMed ID: 11160654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7.
    Cui C; Mayer ML
    J Neurosci; 1999 Oct; 19(19):8281-91. PubMed ID: 10493729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists.
    Mayer ML; Ghosal A; Dolman NP; Jane DE
    J Neurosci; 2006 Mar; 26(11):2852-61. PubMed ID: 16540562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent pharmacological activity of novel marine-derived excitatory amino acids on glutamate receptors.
    Sanders JM; Ito K; Settimo L; Pentikäinen OT; Shoji M; Sasaki M; Johnson MS; Sakai R; Swanson GT
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1068-78. PubMed ID: 15914675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expression of dominant-negative subunits selectively suppresses neuronal AMPA and kainate receptors.
    Robert A; Hyde R; Hughes TE; Howe JR
    Neuroscience; 2002; 115(4):1199-210. PubMed ID: 12453491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kainate receptors exhibit differential sensitivities to (S)-5-iodowillardiine.
    Swanson GT; Green T; Heinemann SF
    Mol Pharmacol; 1998 May; 53(5):942-9. PubMed ID: 9584222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mosaic of functional kainate receptors in hippocampal interneurons.
    Christensen JK; Paternain AV; Selak S; Ahring PK; Lerma J
    J Neurosci; 2004 Oct; 24(41):8986-93. PubMed ID: 15483117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the amino acid subsets accounting for the ligand binding specificity of a glutamate receptor.
    Paas Y; Eisenstein M; Medevielle F; Teichberg VI; Devillers-Thiéry A
    Neuron; 1996 Nov; 17(5):979-90. PubMed ID: 8938129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of binding site residues responsible for the subunit selectivity of novel marine-derived compounds on kainate receptors.
    Sanders JM; Pentikäinen OT; Settimo L; Pentikäinen U; Shoji M; Sasaki M; Sakai R; Johnson MS; Swanson GT
    Mol Pharmacol; 2006 Jun; 69(6):1849-60. PubMed ID: 16537793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons.
    Sahara Y; Noro N; Iida Y; Soma K; Nakamura Y
    J Neurosci; 1997 Sep; 17(17):6611-20. PubMed ID: 9254673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors.
    Paternain AV; Herrera MT; Nieto MA; Lerma J
    J Neurosci; 2000 Jan; 20(1):196-205. PubMed ID: 10627597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons.
    Castillo PE; Malenka RC; Nicoll RA
    Nature; 1997 Jul; 388(6638):182-6. PubMed ID: 9217159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kainate receptor-mediated synaptic transmission in the adult anterior cingulate cortex.
    Wu LJ; Zhao MG; Toyoda H; Ko SW; Zhuo M
    J Neurophysiol; 2005 Sep; 94(3):1805-13. PubMed ID: 15928066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn.
    Kerchner GA; Wilding TJ; Huettner JE; Zhuo M
    J Neurosci; 2002 Sep; 22(18):8010-7. PubMed ID: 12223554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors.
    Andreou AP; Holland PR; Lasalandra MP; Goadsby PJ
    Pain; 2015 Mar; 156(3):439-450. PubMed ID: 25679470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, total synthesis, and biological evaluation of neodysiherbaine A derivative as potential probes.
    Sasaki M; Tsubone K; Shoji M; Oikawa M; Shimamoto K; Sakai R
    Bioorg Med Chem Lett; 2006 Nov; 16(22):5784-7. PubMed ID: 16949819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
    Mayer ML
    Neuron; 2005 Feb; 45(4):539-52. PubMed ID: 15721240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.