BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12062208)

  • 1. New artificial oxygen carriers made of pegulated polymerised pyridoxylated porcine haemoglobin (P(4)Hb).
    Barnikol WK; Burkhard O; Poetzschke H; Domack U; Dinkelmann S; Guth S; Fiedler B; Manz B
    Comp Biochem Physiol A Mol Integr Physiol; 2002 May; 132(1):185-91. PubMed ID: 12062208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molar masses and structure in solution of haemoglobin hyperpolymers--a common calibration of size exclusion chromatography of these artificial oxygen carriers.
    Pötzschke H; Barnikol WK; Domack U; Dinkelmann S; Guth S
    Artif Cells Blood Substit Immobil Biotechnol; 1997 Nov; 25(6):527-40. PubMed ID: 9352058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Haemoglobin hyperpolymers, a new type of artificial oxygen carrier -- the concept and current state of development].
    Barnikol WK; Pötzschke H
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2005 Jan; 40(1):46-58. PubMed ID: 15645387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new type of artificial oxygen carrier: soluble hyperpolymeric haemoglobin with negligible oncotic pressure--production of thermally stable hyperpolymers from human blood with glutaraldehyde as cross-linker.
    Pötzschke H; Barnikol WK
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):287-91. PubMed ID: 1391444
    [No Abstract]   [Full Text] [Related]  

  • 6. [Comparative study of chemically modified hemoglobins as a basis for oxygen-carrying blood substitutes].
    Azhigirova MA; Viazova EP; Shuvalova AL; Vashkevich MG
    Biull Eksp Biol Med; 1993 Apr; 115(4):364-6. PubMed ID: 8049393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divinyl sulfone cross-linked hyperpolymeric human haemoglobin as an artificial oxygen carrier in anaesthetized spontaneously breathing rats.
    Pötzschke H; Guth S; Barnikol WK
    Adv Exp Med Biol; 1994; 345():205-13. PubMed ID: 8079709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and physicochemical characterization of a series of hemoglobin-based oxygen carriers: objective comparison between cellular and acellular types.
    Sakai H; Yuasa M; Onuma H; Takeoka S; Tsuchida E
    Bioconjug Chem; 2000; 11(1):56-64. PubMed ID: 10639086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of blood volume after haemodilution with haemoglobin-based oxygen carriers by a radiolabelled-albumin method.
    Caron A; Mayer JC; Menu P; Alayash A; Marie PY; Vigneron C
    Transfus Med; 2001 Dec; 11(6):433-42. PubMed ID: 11851941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of glutaraldehyde concentration on the physical properties of polymerized hemoglobin-based oxygen carriers.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(4):1225-32. PubMed ID: 15296452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular perspective of oxygen-carrying and -noncarrying blood substitutes.
    Intaglietta M; Cabrales P; Tsai AG
    Annu Rev Biomed Eng; 2006; 8():289-321. PubMed ID: 16834558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O-raffinose-polymerised haemoglobin. A biochemical and pharmacological profile of an oxygen carrier.
    Scatena R; Giardina B
    Expert Opin Biol Ther; 2001 Jan; 1(1):121-7. PubMed ID: 11727541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers.
    Jansman MMT; Hosta-Rigau L
    Adv Colloid Interface Sci; 2018 Oct; 260():65-84. PubMed ID: 30177214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the polymerization step alone on oxygen affinity and cooperativity during production of hyperpolymers from native hemoglobins with crosslinkers.
    Barnikol WK
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):725-31. PubMed ID: 7994394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen therapeutics: can we tame haemoglobin?
    Alayash AI
    Nat Rev Drug Discov; 2004 Feb; 3(2):152-9. PubMed ID: 15043006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin linked to polyanionic polymers as potential red blood cell substitutes.
    Dellacherie E; Grandgeorge M; Prouchayret F; Fasan G
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):309-17. PubMed ID: 1382640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural compound (reuterin) produced by Lactobacillus reuteri for hemoglobin polymerization as a blood substitute.
    Chen YC; Chang WH; Chang Y; Huang CM; Sung HW
    Biotechnol Bioeng; 2004 Jul; 87(1):34-42. PubMed ID: 15211486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Modified hemoglobins as oxygen transporting blood substitutes ].
    Waschke KF
    Anaesthesist; 1995 Jan; 44(1):1-12. PubMed ID: 7695075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The place for using erythrocyte substitutes in hemodilution: fluosol-DA and polymerized pyridoxylated hemoglobin].
    Vigneron C; Labrude P; Dellacherie E
    Ann Fr Anesth Reanim; 1986; 5(3):260-8. PubMed ID: 3535579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and in vitro characteristics of polymerized pyridoxylated hemoglobin.
    Sehgal LR; Rosen AL; Gould SA; Sehgal HL; Moss GS
    Transfusion; 1983; 23(2):158-62. PubMed ID: 6404022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.