BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12062383)

  • 1. Contribution of solvent water to the solution X-ray scattering profile of proteins.
    Seki Y; Tomizawa T; Khechinashvili NN; Soda K
    Biophys Chem; 2002 Mar; 95(3):235-52. PubMed ID: 12062383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding water: molecular dynamics simulations of myoglobin.
    Gu W; Garcia AE; Schoenborn BP
    Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.
    Nguyen HT; Pabit SA; Meisburger SP; Pollack L; Case DA
    J Chem Phys; 2014 Dec; 141(22):22D508. PubMed ID: 25494779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-level expression and deuteration of sperm whale myoglobin. A study of its solvent structure by X-ray and neutron diffraction methods.
    Shu F; Ramakrishnan V; Schoenborn BP
    Basic Life Sci; 1996; 64():309-23. PubMed ID: 9031516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting solution X-ray scattering data using molecular simulations.
    Hub JS
    Curr Opin Struct Biol; 2018 Apr; 49():18-26. PubMed ID: 29172147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting water and ion distributions from solution x-ray scattering experiments.
    Nguyen HT; Pabit SA; Pollack L; Case DA
    J Chem Phys; 2016 Jun; 144(21):214105. PubMed ID: 27276943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase from Thermococcus profundus studied by cryogenic X-ray crystal structure analysis and small-angle X-ray scattering.
    Nakasako M; Fujisawa T; Adachi S; Kudo T; Higuchi S
    Biochemistry; 2001 Mar; 40(10):3069-79. PubMed ID: 11258921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of the water around myoglobin.
    Phillips GN; Pettitt BM
    Protein Sci; 1995 Feb; 4(2):149-58. PubMed ID: 7757005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated x-ray scattering of protein solutions using explicit-solvent models.
    Park S; Bardhan JP; Roux B; Makowski L
    J Chem Phys; 2009 Apr; 130(13):134114. PubMed ID: 19355724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V; Pettitt BM
    Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data.
    Loncharich RJ; Brooks BR
    J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residence times of water molecules in the hydration sites of myoglobin.
    Makarov VA; Andrews BK; Smith PE; Pettitt BM
    Biophys J; 2000 Dec; 79(6):2966-74. PubMed ID: 11106604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration structure of human lysozyme investigated by molecular dynamics simulation and cryogenic X-ray crystal structure analyses: on the correlation between crystal water sites, solvent density, and solvent dipole.
    Higo J; Nakasako M
    J Comput Chem; 2002 Nov; 23(14):1323-36. PubMed ID: 12214315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein hydration elucidated by molecular dynamics simulation.
    Steinbach PJ; Brooks BR
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9135-9. PubMed ID: 8415667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation and cavity occupation in biomolecules.
    Lynch GC; Perkyns JS; Nguyen BL; Pettitt BM
    Biochim Biophys Acta; 2015 May; 1850(5):923-931. PubMed ID: 25261777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global structure analysis of acid-unfolded myoglobin with consideration to effects of intermolecular coulomb repulsion on solution X-ray scattering.
    Seki Y; Tomizawa T; Hiragi Y; Soda K
    Biochemistry; 2007 Jan; 46(1):234-44. PubMed ID: 17198394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin.
    Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG
    Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing the protein-water interface.
    Makarov VA; Andrews BK; Pettitt BM
    Biopolymers; 1998 Jun; 45(7):469-78. PubMed ID: 9577228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local order in aqueous NaCl solutions and pure water: X-ray scattering and molecular dynamics simulations study.
    Bouazizi S; Nasr S; JaƮdane N; Bellissent-Funel MC
    J Phys Chem B; 2006 Nov; 110(46):23515-23. PubMed ID: 17107207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.