These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12062383)

  • 21. Fitting high-resolution electron density maps from atomic models to solution scattering data.
    Chamberlain SR; Moore S; Grant TD
    Biophys J; 2023 Dec; 122(23):4567-4581. PubMed ID: 37924208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction.
    Finer-Moore JS; Kossiakoff AA; Hurley JH; Earnest T; Stroud RM
    Proteins; 1992 Mar; 12(3):203-22. PubMed ID: 1557349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics simulation of hydration in myoglobin.
    Gu W; Schoenborn BP
    Proteins; 1995 May; 22(1):20-6. PubMed ID: 7675783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SASSIM: a method for calculating small-angle X-ray and neutron scattering and the associated molecular envelope from explicit-atom models of solvated proteins.
    Merzel F; Smith JC
    Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):242-9. PubMed ID: 11807248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Evidence for the Effect of Glycerol on Protein Hydration and Thermal Structural Transition.
    Hirai M; Ajito S; Sugiyama M; Iwase H; Takata SI; Shimizu N; Igarashi N; Martel A; Porcar L
    Biophys J; 2018 Jul; 115(2):313-327. PubMed ID: 30021107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements.
    Meisburger SP; Pabit SA; Pollack L
    Biophys J; 2015 Jun; 108(12):2886-95. PubMed ID: 26083928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvent-dependent molecular structure of ionic species directly measured by ultrafast x-ray solution scattering.
    Kim KH; Lee JH; Kim J; Nozawa S; Sato T; Tomita A; Ichiyanagi K; Ki H; Kim J; Adachi S; Ihee H
    Phys Rev Lett; 2013 Apr; 110(16):165505. PubMed ID: 23679619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics.
    Knight CJ; Hub JS
    Nucleic Acids Res; 2015 Jul; 43(W1):W225-30. PubMed ID: 25855813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the hydration layer around proteins: applications to small- and wide-angle x-ray scattering.
    Virtanen JJ; Makowski L; Sosnick TR; Freed KF
    Biophys J; 2011 Oct; 101(8):2061-9. PubMed ID: 22004761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity.
    Gallat FX; Brogan AP; Fichou Y; McGrath N; Moulin M; Härtlein M; Combet J; Wuttke J; Mann S; Zaccai G; Jackson CJ; Perriman AW; Weik M
    J Am Chem Soc; 2012 Aug; 134(32):13168-71. PubMed ID: 22853639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics decomposition of temperature-dependent elastic neutron scattering by a protein solution.
    Hayward JA; Finney JL; Daniel RM; Smith JC
    Biophys J; 2003 Aug; 85(2):679-85. PubMed ID: 12885619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein and nucleic acid hydration and cosolvent interactions: establishment of reliable baseline values at high cosolvent concentrations.
    Eisenberg H
    Biophys Chem; 1994 Dec; 53(1-2):57-68. PubMed ID: 7841332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of a protein and its surrounding environment: a quasielastic neutron scattering study of myoglobin in water and glycerol mixtures.
    Jansson H; Kargl F; Fernandez-Alonso F; Swenson J
    J Chem Phys; 2009 May; 130(20):205101. PubMed ID: 19485482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution.
    Fraternali F; Van Gunsteren WF
    J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein hydration in solution: experimental observation by x-ray and neutron scattering.
    Svergun DI; Richard S; Koch MH; Sayers Z; Kuprin S; Zaccai G
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2267-72. PubMed ID: 9482874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling of solvent positions around polar groups in proteins.
    Pitt WR; Goodfellow JM
    Protein Eng; 1991 Jun; 4(5):531-7. PubMed ID: 1891460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
    Yang L; Dordick JS; Garde S
    Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data.
    Trewhella J; Vachette P; Larsen AH
    IUCrJ; 2024 Sep; ():. PubMed ID: 38989800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.