BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12062424)

  • 1. Heteronuclear NMR studies of human serum apolipoprotein A-I. Part I. Secondary structure in lipid-mimetic solution.
    Okon M; Frank PG; Marcel YL; Cushley RJ
    FEBS Lett; 2002 Apr; 517(1-3):139-43. PubMed ID: 12062424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure of human apolipoprotein A-I(1-186) in lipid-mimetic solution.
    Okon M; Frank PG; Marcel YL; Cushley RJ
    FEBS Lett; 2001 Jan; 487(3):390-6. PubMed ID: 11163364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions.
    Wang G; Treleaven WD; Cushley RJ
    Biochim Biophys Acta; 1996 Jun; 1301(3):174-84. PubMed ID: 8664326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy.
    Wang G; Sparrow JT; Cushley RJ
    Biochemistry; 1997 Nov; 36(44):13657-66. PubMed ID: 9354635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate.
    MacRaild CA; Hatters DM; Howlett GJ; Gooley PR
    Biochemistry; 2001 May; 40(18):5414-21. PubMed ID: 11331005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation and lipid binding of a C-terminal (198-243) peptide of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2007 Feb; 46(6):1624-34. PubMed ID: 17279626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational studies of an amphipathic peptide corresponding to human apolipoprotein A-II residues 18-30 with a C-terminal lipid binding motif EWLNS.
    Buchko GW; Wang G; Pierens GK; Cushley RJ
    Int J Pept Protein Res; 1996 Jul; 48(1):21-30. PubMed ID: 8844260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of lipid-binding properties of the N-terminal helical segments in human apolipoprotein A-I using fragment peptides.
    Tanaka M; Tanaka T; Ohta S; Kawakami T; Konno H; Akaji K; Aimoto S; Saito H
    J Pept Sci; 2009 Jan; 15(1):36-42. PubMed ID: 19048603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformations of human apolipoprotein E(263-286) and E(267-289) in aqueous solutions of sodium dodecyl sulfate by CD and 1H NMR.
    Wang G; Pierens GK; Treleaven WD; Sparrow JT; Cushley RJ
    Biochemistry; 1996 Aug; 35(32):10358-66. PubMed ID: 8756691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared spectroscopy of human apolipoprotein fragments in SDS/D2O: relative lipid-binding affinities and a novel amide I assignment.
    Shaw RA; Buchko GW; Wang G; Rozek A; Treleaven WD; Mantsch HH; Cushley RJ
    Biochemistry; 1997 Nov; 36(47):14531-8. PubMed ID: 9398171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation of two peptides corresponding to human apolipoprotein C-I residues 7-24 and 35-53 in the presence of sodium dodecyl sulfate by CD and NMR spectroscopy.
    Rozek A; Buchko GW; Cushley RJ
    Biochemistry; 1995 Jun; 34(22):7401-8. PubMed ID: 7779782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-binding studies of human apolipoprotein A-I and its terminally truncated mutants.
    Fang Y; Gursky O; Atkinson D
    Biochemistry; 2003 Nov; 42(45):13260-8. PubMed ID: 14609337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined N- and C-terminal truncation of human apolipoprotein A-I yields a folded, functional central domain.
    Beckstead JA; Block BL; Bielicki JK; Kay CM; Oda MN; Ryan RO
    Biochemistry; 2005 Mar; 44(11):4591-9. PubMed ID: 15766290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine.
    Storjohann R; Rozek A; Sparrow JT; Cushley RJ
    Biochim Biophys Acta; 2000 Jul; 1486(2-3):253-64. PubMed ID: 10903476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How the lipid-free structure of the N-terminal truncated human apoA-I converts to the lipid-bound form: new insights from NMR and X-ray structural comparison.
    Wang G
    FEBS Lett; 2002 Oct; 529(2-3):157-61. PubMed ID: 12372592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carboxyl-terminal segment of apolipoprotein A-V undergoes a lipid-induced conformational change.
    Mauldin K; Lee BL; Oleszczuk M; Sykes BD; Ryan RO
    Biochemistry; 2010 Jun; 49(23):4821-6. PubMed ID: 20469899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation.
    Gorshkova IN; Liu T; Kan HY; Chroni A; Zannis VI; Atkinson D
    Biochemistry; 2006 Jan; 45(4):1242-54. PubMed ID: 16430220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of (1-71)bacterioopsin solubilized in methanol/chloroform and SDS micelles determined by 15N-1H heteronuclear NMR spectroscopy.
    Pervushin KV; Orekhov VYu ; Popov AI; Musina LYu ; Arseniev AS
    Eur J Biochem; 1994 Jan; 219(1-2):571-83. PubMed ID: 8307023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chameleon 'aggregation-prone' segments of apoA-I: A model of amyloid fibrils formed in apoA-I amyloidosis.
    Louros NN; Tsiolaki PL; Griffin MD; Howlett GJ; Hamodrakas SJ; Iconomidou VA
    Int J Biol Macromol; 2015 Aug; 79():711-8. PubMed ID: 26049118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.