BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1206338)

  • 1. Role of active potassium transport by integumentary epithelium in secretion of larval-pupal moulting fluid during silkmoth development.
    Jungreis AM; Harvey WR
    J Exp Biol; 1975 Apr; 62(2):357-66. PubMed ID: 1206338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride transport across the integumentary epithelium of Manduca sexta (Lepidoptera: Sphingidae).
    Cooper PD; Jungreis AM
    J Comp Physiol B; 1985; 155(6):743-50. PubMed ID: 3837038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-Glutamate retrieved with the moulting fluid is processed by a glutamine synthetase in the pupal midgut of Calpodes ethlius.
    Yarema C; McLean H; Caveney S
    J Insect Physiol; 2000 Nov; 46(11):1497-1507. PubMed ID: 10891579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active transport of magnesium across the isolated midgut of Hyalophora cecropia.
    Wood JL; Jungreis AM; Harvey WR
    J Exp Biol; 1975 Oct; 63(2):313-20. PubMed ID: 1202124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of NMR microscopy to the morphological study of the silkworm, Bombyx mori, during its metamorphosis.
    Mapelli M; Greco F; Gussoni M; Consonni R; Zetta L
    Magn Reson Imaging; 1997; 15(6):693-700. PubMed ID: 9285809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A clip domain serine protease involved in moulting in the silkworm, Bombyx mori: cloning, characterization, expression patterns and functional analysis.
    Liu HW; Wang LL; Meng Z; Tang X; Li YS; Xia QY; Zhao P
    Insect Mol Biol; 2017 Oct; 26(5):507-521. PubMed ID: 28597953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of autophagy in midgut stem cells of silkworm Bombyx mori, during larval-pupal metamorphosis.
    Gunay B; Goncu E
    Arch Insect Biochem Physiol; 2021 Sep; 108(1):e21832. PubMed ID: 34250644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect midgut K(+) secretion: concerted run-down of apical/basolateral transporters with extra-/intracellular acidity.
    Zeiske W; Meyer H; Wieczorek H
    J Exp Biol; 2002 Feb; 205(Pt 4):463-74. PubMed ID: 11893760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Appearance of apoptotic cells and granular cells in the silkworm midgut lumen during larval-pupal ecdysis.
    Shinohara Y; Ishii N; Takahashi S; Okazaki T
    Zoolog Sci; 2008 Feb; 25(2):139-45. PubMed ID: 18533744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Juvenile hormone in relation to the larval-pupal transformation of the cecropia silkworm.
    Riddiford LM
    Biol Bull; 1972 Apr; 142(2):310-25. PubMed ID: 5021130
    [No Abstract]   [Full Text] [Related]  

  • 11. Active transport of potassium by insect midgut.
    Blankemeyer JT
    Fed Proc; 1981 Jul; 40(9):2412-6. PubMed ID: 6265291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha-Glycerol phosphatase and glycerol kinase activities in tissues of the silkmoth Hyalophora cecropia during the larval-pupal transformation.
    Jungreis AM; Dailey JC; Hereth ML
    Am J Physiol; 1975 Nov; 229(5):1448-54. PubMed ID: 173194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation distributions across the larval and pupal midgut of the lepidopteran, Hyalophora cecropia, in vivo.
    Harvey WR; Wood JL; Quatrale RP; Jungreis AM
    J Exp Biol; 1975 Oct; 63(2):321-30. PubMed ID: 1202125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the short circuit decay profile and maintenance of the cation transport capacity of the larval lepidopteran midgut in vitro and in vivo.
    Schultz TW; Jungreis AM
    Tissue Cell; 1977; 9(2):255-72. PubMed ID: 906016
    [No Abstract]   [Full Text] [Related]  

  • 15. Active transport of caesium by the isolated and short-circuited midgut of Hyalophora cecropia.
    Zerahn K
    J Exp Biol; 1970 Dec; 53(3):641-9. PubMed ID: 5487169
    [No Abstract]   [Full Text] [Related]  

  • 16. The coupled movements of sodium and chloride across the basolateral membrane of frog skin epithelium.
    Fernandes PL; Ferreira HG; Ferreira KT
    J Physiol; 1989 Sep; 416():403-20. PubMed ID: 2607456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium transport by rabbit descending colon, in vitro.
    Schultz SG
    Fed Proc; 1981 Jul; 40(9):2408-11. PubMed ID: 6265290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 20-Hydroxyecdysone (20E) Primary Response Gene E93 Modulates 20E Signaling to Promote Bombyx Larval-Pupal Metamorphosis.
    Liu X; Dai F; Guo E; Li K; Ma L; Tian L; Cao Y; Zhang G; Palli SR; Li S
    J Biol Chem; 2015 Nov; 290(45):27370-27383. PubMed ID: 26378227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active transport by the cecropia midgut. V. Loss of potassium transport during larval-pupal transformation.
    Haskell JA; Harvey WR; Clark RM
    J Exp Biol; 1968 Feb; 48(1):25-37. PubMed ID: 5648816
    [No Abstract]   [Full Text] [Related]  

  • 20. Refinements in the short-circuit technique and its application to active potassium transport across the cecropia midgut.
    Wood JL; Moreton RB
    J Exp Biol; 1978 Dec; 77():123-40. PubMed ID: 752059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.