BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1206432)

  • 1. Kinetic studies on glial, Schwann and capsular cells labelled with [3H] thymidine in cerebrospinal tissue of young mice.
    Kraus-Ruppert R; Laissue J; Bürki H; Odartchenko N
    J Neurol Sci; 1975 Dec; 26(4):555-63. PubMed ID: 1206432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioautographic evidence for the protracted proliferation of glial cells in the central nervous system of jimpy mice.
    Privat A; Valat J; Lachapelle F; Baumann N; Fulcrand J
    Brain Res; 1981 Oct; 254(3):411-6. PubMed ID: 7284858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat.
    Wu S; Suzuki Y; Noda T; Bai H; Kitada M; Kataoka K; Nishimura Y; Ide C
    J Neurosci Res; 2002 Sep; 69(6):940-5. PubMed ID: 12205687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ongoing block of Schwann cell differentiation and deployment in dystrophic mouse spinal roots.
    Perkins CS; Bray GM; Aguayo AJ
    Brain Res; 1981 Apr; 227(2):213-20. PubMed ID: 7225891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glia are a unique substrate for the in vitro growth of central nervous system neurons.
    Noble M; Fok-Seang J; Cohen J
    J Neurosci; 1984 Jul; 4(7):1892-903. PubMed ID: 6737045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of a neurotoxic lectin, volkensin, to induce loss of identified motoneuron pools.
    Nógrádi A; Vrbová G
    Neuroscience; 1992 Oct; 50(4):975-86. PubMed ID: 1448208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative postnatal development of spinal, trigeminal and vagal sensory root entry zones.
    Toma JS; McPhail LT; Ramer MS
    Int J Dev Neurosci; 2006 Oct; 24(6):373-88. PubMed ID: 16911863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The morphology of lipopigment granules in oligodendrocytes of the cerebellum and spinal cord and in Schwann cells of the N. ischiadicus of the cat, Japanese waltzing mouse, and albino mouse.
    Lange W; Schropp A
    Acta Neuropathol; 1985; 65(3-4):330-4. PubMed ID: 3976369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitotic Schwann cells in normal mature spinal roots.
    Pannese E; Ledda M; Arcidiacono G; Frattola D; Rigamonti L; Procacci P
    Cellule; 1987; 74():171-7. PubMed ID: 3274985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations on the interactions of Schwann cells and astrocytes following X-irradiation of neonatal rat spinal cord.
    Blakemore WF; Patterson RC
    J Neurocytol; 1975 Oct; 4(5):573-85. PubMed ID: 1177001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.
    Schlachetzki JC; Pizzo DP; Morrissette DA; Winkler J
    Biomed Res Int; 2014; 2014():704259. PubMed ID: 24738070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Schwann cell myelination of the myelin deficient rat spinal cord following X-irradiation.
    Duncan ID; Hammang JP; Gilmore SA
    Glia; 1988; 1(3):233-9. PubMed ID: 2976042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of dorsal root axons into experimentally altered glial environments in the rat spinal cord.
    Sims TJ; Gilmore SA
    Exp Brain Res; 1994; 99(1):25-33. PubMed ID: 7523172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schwann cell multiplication in developing rat unmyelinated nerves-a radioautographic study.
    Terry LC; Bray GM; Aguayo AJ
    Brain Res; 1974 Mar; 69(1):144-8. PubMed ID: 4594231
    [No Abstract]   [Full Text] [Related]  

  • 15. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.
    Scott AL; Ramer MS
    Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in the ventral root-spinal cord junction [proceedings].
    Fraher J
    J Physiol; 1978 Feb; 275():20P-21P. PubMed ID: 633107
    [No Abstract]   [Full Text] [Related]  

  • 17. [Time of origin of cells in the histiogenesis of the spinal cord].
    Gracheva ND
    Arkh Anat Gistol Embriol; 1975 Apr; 68(4):22-8. PubMed ID: 1191042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture.
    Ullian EM; Harris BT; Wu A; Chan JR; Barres BA
    Mol Cell Neurosci; 2004 Feb; 25(2):241-51. PubMed ID: 15019941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nerve and muscle cells in culture.
    Nelson PG
    Physiol Rev; 1975 Jan; 55(1):1-61. PubMed ID: 162810
    [No Abstract]   [Full Text] [Related]  

  • 20. Glial fibrillary acidic protein (GFAP) in spinal cord of postnatal rat. An immunoperoxidase study in semithin sections.
    Bullon MM; Alvarez-Gago T; Fernandez-Ruiz B; Aguirre C
    Brain Res; 1984 May; 316(1):129-33. PubMed ID: 6375815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.