These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12064406)

  • 1. Light-scattering measurements of optical thin-film components at 157 and 193 nm.
    Gliech S; Steinert J; Duparré A
    Appl Opt; 2002 Jun; 41(16):3224-35. PubMed ID: 12064406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions.
    Schröder S; Gliech S; Duparré A
    Appl Opt; 2005 Oct; 44(29):6093-107. PubMed ID: 16237923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis.
    Schröder S; Herffurth T; Trost M; Duparré A
    Appl Opt; 2010 Mar; 49(9):1503-12. PubMed ID: 20300144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instrument for close-to-process light scatter measurements of thin film coatings and substrates.
    von Finck A; Hauptvogel M; Duparré A
    Appl Opt; 2011 Mar; 50(9):C321-8. PubMed ID: 21460959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical scatter characteristics of high-reflectance dielectric coatings and fused-silica substrates.
    Watkins SE; Black JP; Pond BJ
    Appl Opt; 1993 Oct; 32(28):5511-8. PubMed ID: 20856362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roughness evolution and scatter losses of multilayers for 193 nm optics.
    Schröder S; Duparré A; Tünnermann A
    Appl Opt; 2008 May; 47(13):C88-97. PubMed ID: 18449277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light scattering characterization of single-layer nanoporous SiO
    Sekman Y; Felde N; Ghazaryan L; Szeghalmi A; Schröder S
    Appl Opt; 2020 Feb; 59(5):A143-A149. PubMed ID: 32225366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral angle resolved scattering of thin film coatings.
    Schröder S; Unglaub D; Trost M; Cheng X; Zhang J; Duparré A
    Appl Opt; 2014 Feb; 53(4):A35-41. PubMed ID: 24514238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers.
    Trost M; Schröder S; Feigl T; Duparré A; Tünnermann A
    Appl Opt; 2011 Mar; 50(9):C148-53. PubMed ID: 21460930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EUV reflectance and scattering of Mo/Si multilayers on differently polished substrates.
    Schröder S; Feigl T; Duparré A; Tünnermann A
    Opt Express; 2007 Oct; 15(21):13997-4012. PubMed ID: 19550673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of interface roughness by using a spectroscopic total-integrated-scatter instrument.
    Rönnow D; Bergkvist M; Roos A; Ribbing CG
    Appl Opt; 1993 Jul; 32(19):3448-51. PubMed ID: 20829964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of optical coatings using a multisource table-top scatterometer.
    von Finck A; Herffurth T; Schröder S; Duparré A; Sinzinger S
    Appl Opt; 2014 Feb; 53(4):A259-69. PubMed ID: 24514224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angle-resolved scattering: an effective method for characterizing thin-film coatings.
    Schröder S; Herffurth T; Blaschke H; Duparré A
    Appl Opt; 2011 Mar; 50(9):C164-71. PubMed ID: 21460933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition.
    Pfeiffer K; Ghazaryan L; Schulz U; Szeghalmi A
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21887-21894. PubMed ID: 31083898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination-resistant silica antireflective coating with closed ordered mesopores.
    Sun J; Zhang Q; Ding R; Lv H; Yan H; Yuan X; Xu Y
    Phys Chem Chem Phys; 2014 Aug; 16(31):16684-93. PubMed ID: 25000419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance optimization of 193 nm antireflective coatings with wide incident angle ranges on strongly curved spherical substrates.
    Liu C; Kong M; Li B
    Opt Express; 2018 Jul; 26(15):19524-19533. PubMed ID: 30114123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical-gradient antireflective coatings for 157-nm optical lithography applications.
    Chen HL; Fan W; Wang TJ; Ko FH; Zhai RS; Hsu CK; Chuang TJ
    Appl Opt; 2004 Apr; 43(10):2141-5. PubMed ID: 15074424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous determination of optical loss, residual reflectance and transmittance of highly anti-reflective coatings with cavity ring down technique.
    Li B; Cui H; Han Y; Gao L; Guo C; Gao C; Wang Y
    Opt Express; 2014 Nov; 22(23):29135-42. PubMed ID: 25402152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation.
    Ristau D; Günster S; Bosch S; Duparré A; Masetti E; Ferré-Borrull J; Kiriakidis G; Peiró F; Quesnel E; Tikhonravov A
    Appl Opt; 2002 Jun; 41(16):3196-204. PubMed ID: 12064402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Jun; 400():24-30. PubMed ID: 23582903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.