BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12064482)

  • 1. Functional significance of a highly conserved glutamate residue of the human noradrenaline transporter.
    Sucic S; Paczkowski FA; Runkel F; Bönisch H; Bryan-Lluka LJ
    J Neurochem; 2002 Apr; 81(2):344-54. PubMed ID: 12064482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of proline residues in the expression and function of the human noradrenaline transporter.
    Paczkowski FA; Bryan-Lluka LJ
    J Neurochem; 2004 Jan; 88(1):203-11. PubMed ID: 14675164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology.
    Paczkowski FA; Bryan-Lluka LJ
    Brain Res Mol Brain Res; 2001 Dec; 97(1):32-42. PubMed ID: 11744160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the conserved GXXXRXG motif in the expression and function of the human norepinephrine transporter.
    Sucic S; Bryan-Lluka LJ
    Brain Res Mol Brain Res; 2002 Dec; 108(1-2):40-50. PubMed ID: 12480177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional importance of the C-terminus of the human norepinephrine transporter.
    Distelmaier F; Wiedemann P; Brüss M; Bönisch H
    J Neurochem; 2004 Nov; 91(3):537-46. PubMed ID: 15485485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological properties of the naturally occurring Ala(457)Pro variant of the human norepinephrine transporter.
    Paczkowski FA; Bönisch H; Bryan-Lluka LJ
    Pharmacogenetics; 2002 Mar; 12(2):165-73. PubMed ID: 11875370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional coupling of serotonin and noradrenaline transporters.
    Horschitz S; Hummerich R; Schloss P
    J Neurochem; 2003 Aug; 86(4):958-65. PubMed ID: 12887693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of transmembrane domain 2 and the first intracellular loop in human noradrenaline transporter function: pharmacological and SCAM analysis.
    Sucic S; Bryan-Lluka LJ
    J Neurochem; 2005 Sep; 94(6):1620-30. PubMed ID: 16092934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acids involved in differences in the pharmacological profiles of the rat and human noradrenaline transporters.
    Paczkowski FA; Bryan-Lluka LJ
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Apr; 365(4):312-7. PubMed ID: 11919656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the functional roles of the MELAL and GQXXRXG motifs of the human noradrenaline transporter using cysteine mutants.
    Sucic S; Bryan-Lluka LJ
    Eur J Pharmacol; 2007 Feb; 556(1-3):27-35. PubMed ID: 17141753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter.
    Pifl C; Hornykiewicz O; Giros B; Caron MG
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1437-43. PubMed ID: 8667208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved histidine 295 does not contribute to proton cotransport by the glutamate transporter EAAC1.
    Tao Z; Grewer C
    Biochemistry; 2005 Mar; 44(9):3466-76. PubMed ID: 15736956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. chi-Conopeptide MrIA partially overlaps desipramine and cocaine binding sites on the human norepinephrine transporter.
    Bryan-Lluka LJ; Bönisch H; Lewis RJ
    J Biol Chem; 2003 Oct; 278(41):40324-9. PubMed ID: 12837768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological profile of radioligand binding to the norepinephrine transporter: instances of poor indication of functional activity.
    Reith ME; Wang LC; Dutta AK
    J Neurosci Methods; 2005 Apr; 143(1):87-94. PubMed ID: 15763140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular loop 3 of the noradrenaline transporter contributes to substrate and inhibitor selectivity.
    Lynagh T; Khamu TS; Bryan-Lluka LJ
    Naunyn Schmiedebergs Arch Pharmacol; 2014 Jan; 387(1):95-107. PubMed ID: 24081522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of serine mutations in transmembrane domain 7 of the human norepinephrine transporter on substrate binding and transport.
    Danek Burgess KS; Justice JB
    J Neurochem; 1999 Aug; 73(2):656-64. PubMed ID: 10428062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium- and chloride-dependent, cocaine-sensitive, high-affinity binding of nisoxetine to the human placental norepinephrine transporter.
    Jayanthi LD; Prasad PD; Ramamoorthy S; Mahesh VB; Leibach FH; Ganapathy V
    Biochemistry; 1993 Nov; 32(45):12178-85. PubMed ID: 8218295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delineation of an endogenous zinc-binding site in the human dopamine transporter.
    Norregaard L; Frederiksen D; Nielsen EO; Gether U
    EMBO J; 1998 Aug; 17(15):4266-73. PubMed ID: 9687495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1.
    Tao Z; Grewer C
    J Gen Physiol; 2007 Apr; 129(4):331-44. PubMed ID: 17389249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.
    Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH
    Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.