These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12064546)

  • 1. Comparison of the capability of peak functions in describing real chromatographic peaks.
    Li J
    J Chromatogr A; 2002 Apr; 952(1-2):63-70. PubMed ID: 12064546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks.
    Nikitas P; Pappa-Louisi A; Papageorgiou A
    J Chromatogr A; 2001 Mar; 912(1):13-29. PubMed ID: 11307976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of flexible empirical peak functions for processing chromatographic peaks.
    Li J
    Anal Chem; 1997 Nov; 69(21):4452-62. PubMed ID: 21639177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks.
    Lan K; Jorgenson JW
    J Chromatogr A; 2001 Apr; 915(1-2):1-13. PubMed ID: 11358238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified Gaussian models applied to the description and deconvolution of peaks in chiral liquid chromatography.
    Pérez-Baeza M; Escuder-Gilabert L; Medina-Hernández MJ; Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Aug; 1625():461273. PubMed ID: 32709325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays.
    Dasgupta PK
    J Chromatogr A; 2008 Dec; 1213(1):50-5. PubMed ID: 18790490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of chromatographic peaks using the linearly modified Gaussian model. Comparison with the bi-Gaussian and the Foley and Dorsey approaches.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2017 Sep; 1515():129-137. PubMed ID: 28802524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the capability of a polynomial-modified gaussian model in the description and simulation of chromatographic peaks of amlodipine and its impurity in ion-interaction chromatography.
    Colović J; Vemić A; Kostić N; Malenović A; Medenica M
    J Sep Sci; 2014 Jul; 37(14):1797-804. PubMed ID: 24798430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of theoretical and semi-empirical peak models on the efficiency calculation in chiral chromatography.
    Burk RJ; Wahab MF; Armstrong DW
    Talanta; 2024 Sep; 277():126308. PubMed ID: 38820823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New approaches based on modified Gaussian models for the prediction of chromatographic peaks.
    Baeza-Baeza JJ; Ortiz-Bolsico C; García-Álvarez-Coque MC
    Anal Chim Acta; 2013 Jan; 758():36-44. PubMed ID: 23245894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new mathematical function for describing electrophoretic peaks.
    García-Alvarez-Coque MC; Simó-Alfonso EF; Sanchis-Mallols JM; Baeza-Baeza JJ
    Electrophoresis; 2005 Jun; 26(11):2076-85. PubMed ID: 15880552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of peak asymmetry in chromatography.
    Pápai Z; Pap TL
    J Chromatogr A; 2002 Apr; 953(1-2):31-8. PubMed ID: 12058945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the asymmetric least squares baseline algorithm through the accuracy of statistical peak moments.
    Stevenson PG; Conlan XA; Barnett NW
    J Chromatogr A; 2013 Apr; 1284():107-11. PubMed ID: 23453461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of chromatographic peak parameters by non-linear curve fitting using statistical moments.
    Pápai Z; Pap TL
    Analyst; 2002 Apr; 127(4):494-8. PubMed ID: 12022647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parabolic-Lorentzian modified Gaussian model for describing and deconvolving chromatographic peaks.
    Caballero RD; García-Alvarez-Coque MC; Baeza-Baeza JJ
    J Chromatogr A; 2002 Apr; 954(1-2):59-76. PubMed ID: 12058919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a new mathematical function for describing chromatographic peaks.
    Pap TL; Pápai ZS
    J Chromatogr A; 2001 Sep; 930(1-2):53-60. PubMed ID: 11681579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetrization of Peaks in Chiral Chromatography with an Area-Invariant Resolution Enhancement Method.
    Handlovic TT; Wahab MF; Armstrong DW
    Anal Chem; 2022 Dec; 94(48):16638-16646. PubMed ID: 36395322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemometric strategy for automatic chromatographic peak detection and background drift correction in chromatographic data.
    Yu YJ; Xia QL; Wang S; Wang B; Xie FW; Zhang XB; Ma YM; Wu HL
    J Chromatogr A; 2014 Sep; 1359():262-70. PubMed ID: 25108763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total peak shape analysis: detection and quantitation of concurrent fronting, tailing, and their effect on asymmetry measurements.
    Wahab MF; Patel DC; Armstrong DW
    J Chromatogr A; 2017 Aug; 1509():163-170. PubMed ID: 28647145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peak deconvolution in one-dimensional chromatography using a two-way data approach.
    Vivó-Truyols G; Torres-Lapasió JR; Caballero RD; García-Alvarez-Coque MC
    J Chromatogr A; 2002 Jun; 958(1-2):35-49. PubMed ID: 12134829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.