BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1238 related articles for article (PubMed ID: 12064940)

  • 41. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure.
    Parry DA; Fraser RD; Squire JM
    J Struct Biol; 2008 Sep; 163(3):258-69. PubMed ID: 18342539
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence and structure of a new coiled coil protein from a microtubule bundle in Giardia.
    Marshall J; Holberton DV
    J Mol Biol; 1993 May; 231(2):521-30. PubMed ID: 8510163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural stability of wild type and mutated alpha-keratin fragments: molecular dynamics and free energy calculations.
    Danciulescu C; Nick B; Wortmann FJ
    Biomacromolecules; 2004; 5(6):2165-75. PubMed ID: 15530030
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A parallel coiled-coil tetramer with offset helices.
    Liu J; Deng Y; Zheng Q; Cheng CS; Kallenbach NR; Lu M
    Biochemistry; 2006 Dec; 45(51):15224-31. PubMed ID: 17176044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Local destabilization of the tropomyosin coiled coil gives the molecular flexibility required for actin binding.
    Singh A; Hitchcock-DeGregori SE
    Biochemistry; 2003 Dec; 42(48):14114-21. PubMed ID: 14640678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coiled-coil intermediate filament stutter instability and molecular unfolding.
    Arslan M; Qin Z; Buehler MJ
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):483-9. PubMed ID: 21516532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coiled-coil structure of group A streptococcal M proteins. Different temperature stability of class A and C proteins by hydrophobic-nonhydrophobic amino acid substitutions at heptad positions a and d.
    Cedervall T; Johansson MU; Akerström B
    Biochemistry; 1997 Apr; 36(16):4987-94. PubMed ID: 9125521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural requirements of tropomodulin for tropomyosin binding and actin filament capping.
    Kostyukova AS; Rapp BA; Choy A; Greenfield NJ; Hitchcock-DeGregori SE
    Biochemistry; 2005 Mar; 44(12):4905-10. PubMed ID: 15779917
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod.
    Chen L; Chen LR; Zhou XE; Wang Y; Kahsai MA; Clark AT; Edmondson SP; Liu ZJ; Rose JP; Wang BC; Meehan EJ; Shriver JW
    J Mol Biol; 2004 Jul; 341(1):73-91. PubMed ID: 15312764
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure.
    Peters J; Baumeister W; Lupas A
    J Mol Biol; 1996 Apr; 257(5):1031-41. PubMed ID: 8632466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly.
    Steinert PM; Marekov LN; Fraser RD; Parry DA
    J Mol Biol; 1993 Mar; 230(2):436-52. PubMed ID: 7681879
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The structure of the carboxyl terminus of striated alpha-tropomyosin in solution reveals an unusual parallel arrangement of interacting alpha-helices.
    Greenfield NJ; Swapna GV; Huang Y; Palm T; Graboski S; Montelione GT; Hitchcock-DeGregori SE
    Biochemistry; 2003 Jan; 42(3):614-9. PubMed ID: 12534273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific recognition of coiled coils by infrared spectroscopy: analysis of the three structural domains of type III intermediate filament proteins.
    Heimburg T; Schuenemann J; Weber K; Geisler N
    Biochemistry; 1996 Feb; 35(5):1375-82. PubMed ID: 8634266
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human and Xenopus cingulin share a modular organization of the coiled-coil rod domain: predictions for intra- and intermolecular assembly.
    Citi S; D'Atri F; Parry DA
    J Struct Biol; 2000 Aug; 131(2):135-45. PubMed ID: 11042084
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of disulfide crosslink formation of human vimentin at the dimer, tetramer, and intermediate filament levels.
    Rogers KR; Herrmann H; Franke WW
    J Struct Biol; 1996; 117(1):55-69. PubMed ID: 8776888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Core residue replacements cause coiled-coil orientation switching in vitro and in vivo: structure-function correlations for osmosensory transporter ProP.
    Tsatskis Y; Kwok SC; Becker E; Gill C; Smith MN; Keates RA; Hodges RS; Wood JM
    Biochemistry; 2008 Jan; 47(1):60-72. PubMed ID: 18076193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. C repeats of the streptococcal M1 protein achieve the human serum albumin binding ability by flanking regions which stabilize the coiled-coil conformation.
    Gubbe K; Misselwitz R; Welfle K; Reichardt W; Schmidt KH; Welfle H
    Biochemistry; 1997 Jul; 36(26):8107-13. PubMed ID: 9201959
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinking the coiled coil--negatively charged residues at the coiled-coil interface.
    Straussman R; Ben-Ya'acov A; Woolfson DN; Ravid S
    J Mol Biol; 2007 Mar; 366(4):1232-42. PubMed ID: 17207815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time monitoring of the interactions of two-stranded de novo designed coiled-coils: effect of chain length on the kinetic and thermodynamic constants of binding.
    De Crescenzo G; Litowski JR; Hodges RS; O'Connor-McCourt MD
    Biochemistry; 2003 Feb; 42(6):1754-63. PubMed ID: 12578390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular architecture of intermediate filaments.
    Strelkov SV; Herrmann H; Aebi U
    Bioessays; 2003 Mar; 25(3):243-51. PubMed ID: 12596228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.