BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 12065611)

  • 1. Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane.
    Taylor CM; Coetzee T; Pfeiffer SE
    J Neurochem; 2002 Jun; 81(5):993-1004. PubMed ID: 12065611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin.
    Arvanitis DN; Min W; Gong Y; Heng YM; Boggs JM
    J Neurochem; 2005 Sep; 94(6):1696-710. PubMed ID: 16045452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular localization and detergent solubility of MVP17/rMAL, a lipid raft-associated protein in oligodendrocytes and myelin.
    Kim T; Pfeiffer SE
    J Neurosci Res; 2002 Jul; 69(2):217-26. PubMed ID: 12111803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.
    Radeva G; Sharom FJ
    Biochem J; 2004 May; 380(Pt 1):219-30. PubMed ID: 14769131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase.
    Parkin ET; Turner AJ; Hooper NM
    Biochem J; 2001 Aug; 358(Pt 1):209-16. PubMed ID: 11485569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature.
    Gil C; Cubí R; Blasi J; Aguilera J
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1334-42. PubMed ID: 16920068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both raft- and non-raft proteins associate with CHAPS-insoluble complexes: some APP in large complexes.
    Rouvinski A; Gahali-Sass I; Stav I; Metzer E; Atlan H; Taraboulos A
    Biochem Biophys Res Commun; 2003 Sep; 308(4):750-8. PubMed ID: 12927782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myelin glycosphingolipid/cholesterol-enriched microdomains selectively sequester the non-compact myelin proteins CNP and MOG.
    Kim T; Pfeiffer SE
    J Neurocytol; 1999; 28(4-5):281-93. PubMed ID: 10739571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein.
    Parkin ET; Turner AJ; Hooper NM
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):23-30. PubMed ID: 10548529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains.
    Simons M; Krämer EM; Thiele C; Stoffel W; Trotter J
    J Cell Biol; 2000 Oct; 151(1):143-54. PubMed ID: 11018060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MHC II molecules and invariant chain reside in membranes distinct from conventional lipid rafts.
    Karacsonyi C; Bedke T; Hinrichsen N; Schwinzer R; Lindner R
    J Leukoc Biol; 2005 Nov; 78(5):1097-105. PubMed ID: 16204642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rafts in adult peripheral nerve myelin contain major structural myelin proteins and myelin and lymphocyte protein (MAL) and CD59 as specific markers.
    Erne B; Sansano S; Frank M; Schaeren-Wiemers N
    J Neurochem; 2002 Aug; 82(3):550-62. PubMed ID: 12153479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol sensitivity of detergent resistance: a rapid flow cytometric test for detecting constitutive or induced raft association of membrane proteins.
    Gombos I; Bacsó Z; Detre C; Nagy H; Goda K; Andrásfalvy M; Szabó G; Matkó J
    Cytometry A; 2004 Oct; 61(2):117-26. PubMed ID: 15382146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of detergent-resistant membranes: a systematic approach.
    Babiychuk EB; Draeger A
    Biochem J; 2006 Aug; 397(3):407-16. PubMed ID: 16608442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental partitioning of myelin basic protein into membrane microdomains.
    DeBruin LS; Haines JD; Wellhauser LA; Radeva G; Schonmann V; Bienzle D; Harauz G
    J Neurosci Res; 2005 Apr; 80(2):211-25. PubMed ID: 15772981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review).
    Hooper NM
    Mol Membr Biol; 1999; 16(2):145-56. PubMed ID: 10417979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced resolution of glycosylphosphatidylinositol-anchored and transmembrane proteins from the lipid-rich myelin membrane by two-dimensional gel electrophoresis.
    Taylor CM; Pfeiffer SE
    Proteomics; 2003 Jul; 3(7):1303-12. PubMed ID: 12872231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody cross-linking of myelin oligodendrocyte glycoprotein leads to its rapid repartitioning into detergent-insoluble fractions, and altered protein phosphorylation and cell morphology.
    Marta CB; Taylor CM; Coetzee T; Kim T; Winkler S; Bansal R; Pfeiffer SE
    J Neurosci; 2003 Jul; 23(13):5461-71. PubMed ID: 12843245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains.
    Schroeder RJ; Ahmed SN; Zhu Y; London E; Brown DA
    J Biol Chem; 1998 Jan; 273(2):1150-7. PubMed ID: 9422781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains.
    Radeva G; Perabo J; Sharom FJ
    FEBS J; 2005 Oct; 272(19):4924-37. PubMed ID: 16176266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.