These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12067416)

  • 1. A combined bioinformatic approach oriented to the analysis and design of peptides with high affinity to MHC class I molecules.
    Del Carpio CA; Hennig T; Fickel S; Yoshimori A
    Immunol Cell Biol; 2002 Jun; 80(3):286-99. PubMed ID: 12067416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.
    Doytchinova IA; Walshe VA; Jones NA; Gloster SE; Borrow P; Flower DR
    J Immunol; 2004 Jun; 172(12):7495-502. PubMed ID: 15187128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions.
    Froloff N; Windemuth A; Honig B
    Protein Sci; 1997 Jun; 6(6):1293-301. PubMed ID: 9194189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Class I MHC-peptide interaction: structural and functional aspects.
    Ruppert J; Kubo RT; Sidney J; Grey HM; Sette A
    Behring Inst Mitt; 1994 Jul; (94):48-60. PubMed ID: 7998914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of genetic search in derivation of matrix models of peptide binding to MHC molecules.
    Brusic V; Schönbach C; Takiguchi M; Ciesielski V; Harrison LC
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():75-83. PubMed ID: 9322018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets.
    Altuvia Y; Sette A; Sidney J; Southwood S; Margalit H
    Hum Immunol; 1997 Nov; 58(1):1-11. PubMed ID: 9438204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative approaches to computational vaccinology.
    Doytchinova IA; Flower DR
    Immunol Cell Biol; 2002 Jun; 80(3):270-9. PubMed ID: 12067414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting informative data for developing peptide-MHC binding predictors using a query by committee approach.
    Christensen JK; Lamberth K; Nielsen M; Lundegaard C; Worning P; Lauemøller SL; Buus S; Brunak S; Lund O
    Neural Comput; 2003 Dec; 15(12):2931-42. PubMed ID: 14629874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules.
    Zhu S; Udaka K; Sidney J; Sette A; Aoki-Kinoshita KF; Mamitsuka H
    Bioinformatics; 2006 Jul; 22(13):1648-55. PubMed ID: 16613909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural prediction of peptides bound to MHC class I.
    Fagerberg T; Cerottini JC; Michielin O
    J Mol Biol; 2006 Feb; 356(2):521-46. PubMed ID: 16368108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic characteristics of a peptide-binding groove of human HLA-A2 class I MHC molecules: normal mode analysis of the antigen peptide-class I MHC complex.
    Nojima H; Takeda-Shitaka M; Kurihara Y; Adachi M; Yoneda S; Kamiya K; Umeyama H
    Chem Pharm Bull (Tokyo); 2002 Sep; 50(9):1209-14. PubMed ID: 12237537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of A1- and A24-supertype molecules by analysis of their MHC-peptide binding repertoires.
    Sidney J; Southwood S; Sette A
    Immunogenetics; 2005 Jul; 57(6):393-408. PubMed ID: 16003466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive method for the prediction of protein-peptide binding affinity. Application to the MHC class I molecule HLA-A*0201.
    Doytchinova IA; Blythe MJ; Flower DR
    J Proteome Res; 2002; 1(3):263-72. PubMed ID: 12645903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Polymorphisms in HLA Class I Molecules Govern Their Susceptibility to Peptide Editing by TAPBPR.
    Ilca FT; Drexhage LZ; Brewin G; Peacock S; Boyle LH
    Cell Rep; 2019 Nov; 29(6):1621-1632.e3. PubMed ID: 31693900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico design of MHC class I high binding affinity peptides through motifs activation map.
    Xiao Z; Zhang Y; Yu R; Chen Y; Jiang X; Wang Z; Li S
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):516. PubMed ID: 30598069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores.
    Salomon J; Flower DR
    BMC Bioinformatics; 2006 Nov; 7():501. PubMed ID: 17105666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MHC-peptide binding is assisted by bound water molecules.
    Petrone PM; Garcia AE
    J Mol Biol; 2004 Apr; 338(2):419-35. PubMed ID: 15066441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations of Ab initio predictions of peptide binding to MHC class II molecules.
    Zhang H; Wang P; Papangelopoulos N; Xu Y; Sette A; Bourne PE; Lund O; Ponomarenko J; Nielsen M; Peters B
    PLoS One; 2010 Feb; 5(2):e9272. PubMed ID: 20174654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.