BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 12067594)

  • 21. The flux of free radical attack through mitochondrial DNA is related to aging rate.
    Barja G
    Aging (Milano); 2000 Oct; 12(5):342-55. PubMed ID: 11126520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria.
    Sanchez-Roman I; Gómez A; Pérez I; Sanchez C; Suarez H; Naudí A; Jové M; Lopez-Torres M; Pamplona R; Barja G
    Biogerontology; 2012 Aug; 13(4):399-411. PubMed ID: 22580750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-term caloric restriction and sites of oxygen radical generation in kidney and skeletal muscle mitochondria.
    Gredilla R; Phaneuf S; Selman C; Kendaiah S; Leeuwenburgh C; Barja G
    Ann N Y Acad Sci; 2004 Jun; 1019():333-42. PubMed ID: 15247039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver.
    Sanz A; Caro P; Barja G
    J Bioenerg Biomembr; 2004 Dec; 36(6):545-52. PubMed ID: 15692733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage.
    Sanz A; Caro P; Sanchez JG; Barja G
    Ann N Y Acad Sci; 2006 May; 1067():200-9. PubMed ID: 16803986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain.
    Sanz A; Caro P; Ibañez J; Gómez J; Gredilla R; Barja G
    J Bioenerg Biomembr; 2005 Apr; 37(2):83-90. PubMed ID: 15906153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aging increases Nepsilon-(carboxymethyl)lysine and caloric restriction decreases Nepsilon-(carboxyethyl)lysine and Nepsilon-(malondialdehyde)lysine in rat heart mitochondrial proteins.
    Pamplona R; Portero-Otín M; Bellmun MJ; Gredilla R; Barja G
    Free Radic Res; 2002 Jan; 36(1):47-54. PubMed ID: 11999702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of time of restriction on the decrease in mitochondrial H2O2 production and oxidative DNA damage in the heart of food-restricted rats.
    Gredilla R; López-Torres M; Barja G
    Microsc Res Tech; 2002 Nov; 59(4):273-7. PubMed ID: 12424788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caloric restriction modulates aging rate and sensitivity to oxygen free radical damage in rats.
    Monti D; Tamassia MG; Barozzi D; Pelloni MC; Cossarizza A; Nuzzo C; Grassilli E; Troiano L; Tropea F; Leoni L
    Aging (Milano); 1991 Dec; 3(4):410-2. PubMed ID: 1841622
    [No Abstract]   [Full Text] [Related]  

  • 30. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans.
    López-Torres M; Barja G
    Biochim Biophys Acta; 2008 Nov; 1780(11):1337-47. PubMed ID: 18252204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caloric restriction and aging: an update.
    Masoro EJ
    Exp Gerontol; 2000 May; 35(3):299-305. PubMed ID: 10832051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigar and canaries than in mice. Relation to aging rate.
    Pamplona R; Portero-Otín M; Sanz A; Ayala V; Vasileva E; Barja G
    Age (Dordr); 2005 Dec; 27(4):267-80. PubMed ID: 23598660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage.
    Montgomery MK; Buttemer WA; Hulbert AJ
    Exp Gerontol; 2012 Mar; 47(3):211-22. PubMed ID: 22230489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondria and aging.
    Lee HC; Wei YH
    Adv Exp Med Biol; 2012; 942():311-27. PubMed ID: 22399429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary restriction downregulates free radical and lipid peroxide production: plausible mechanism for elongation of life span.
    Yu BP; Lim BO; Sugano M
    J Nutr Sci Vitaminol (Tokyo); 2002 Aug; 48(4):257-64. PubMed ID: 12489815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal.
    Ungvari Z; Ridgway I; Philipp EE; Campbell CM; McQuary P; Chow T; Coelho M; Didier ES; Gelino S; Holmbeck MA; Kim I; Levy E; Sosnowska D; Sonntag WE; Austad SN; Csiszar A
    J Gerontol A Biol Sci Med Sci; 2011 Jul; 66(7):741-50. PubMed ID: 21486920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of 8.5% and 25% caloric restriction on mitochondrial free radical production and oxidative stress in rat liver.
    Gómez J; Caro P; Naudí A; Portero-Otin M; Pamplona R; Barja G
    Biogerontology; 2007 Oct; 8(5):555-66. PubMed ID: 17486421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stress resistance by caloric restriction for longevity.
    Yu BP; Chung HY
    Ann N Y Acad Sci; 2001 Apr; 928():39-47. PubMed ID: 11795526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of every other day feeding on mitochondrial free radical production and oxidative stress in mouse liver.
    Caro P; Gómez J; López-Torres M; Sánchez I; Naudi A; Portero-Otín M; Pamplona R; Barja G
    Rejuvenation Res; 2008 Jun; 11(3):621-9. PubMed ID: 18593280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.