These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 12067701)

  • 1. Functional MRI of motor sequence acquisition: effects of learning stage and performance.
    Müller RA; Kleinhans N; Pierce K; Kemmotsu N; Courchesne E
    Brain Res Cogn Brain Res; 2002 Aug; 14(2):277-93. PubMed ID: 12067701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization.
    Haaland KY; Elsinger CL; Mayer AR; Durgerian S; Rao SM
    J Cogn Neurosci; 2004 May; 16(4):621-36. PubMed ID: 15165352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing brain networks for visuomotor control with increased movement automaticity.
    Floyer-Lea A; Matthews PM
    J Neurophysiol; 2004 Oct; 92(4):2405-12. PubMed ID: 15381748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning.
    Tzvi E; Verleger R; Münte TF; Krämer UM
    Neuroimage; 2016 Nov; 141():60-70. PubMed ID: 27403869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.
    Gooijers J; Beets IA; Albouy G; Beeckmans K; Michiels K; Sunaert S; Swinnen SP
    Brain; 2016 Sep; 139(Pt 9):2469-85. PubMed ID: 27435093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.
    Honey GD; Bullmore ET; Sharma T
    Neuroimage; 2000 Nov; 12(5):495-503. PubMed ID: 11034857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional networks in motor sequence learning: abnormal topographies in Parkinson's disease.
    Nakamura T; Ghilardi MF; Mentis M; Dhawan V; Fukuda M; Hacking A; Moeller JR; Ghez C; Eidelberg D
    Hum Brain Mapp; 2001 Jan; 12(1):42-60. PubMed ID: 11198104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Default mode and dorsal attention network involvement in visually guided motor sequence learning.
    Eryurek K; Ulasoglu-Yildiz C; Matur Z; Öge AE; Gürvit H; Demiralp T
    Cortex; 2022 Jan; 146():89-105. PubMed ID: 34844195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.
    Gauthier CT; Duyme M; Zanca M; Capron C
    Cortex; 2009 Feb; 45(2):164-76. PubMed ID: 19150518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study.
    Haslinger B; Erhard P; Weilke F; Ceballos-Baumann AO; Bartenstein P; Gräfin von Einsiedel H; Schwaiger M; Conrad B; Boecker H
    Brain Res Cogn Brain Res; 2002 Apr; 13(2):159-68. PubMed ID: 11958958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in brain activation during the acquisition of a new bimanual coodination task.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuropsychologia; 2004; 42(7):855-67. PubMed ID: 14998701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of neural activity during observational learning of actions and their sequential orders.
    Frey SH; Gerry VE
    J Neurosci; 2006 Dec; 26(51):13194-201. PubMed ID: 17182769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
    Matsumoto E; Misaki M; Miyauchi S
    Exp Brain Res; 2004 Sep; 158(1):9-17. PubMed ID: 15029467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar BOLD signal during the acquisition of a new lexicon predicts its early consolidation.
    Lesage E; Nailer EL; Miall RC
    Brain Lang; 2016 Oct; 161():33-44. PubMed ID: 26303580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal variability and distribution of functional maps in autism: an FMRI study of visuomotor learning.
    Müller RA; Kleinhans N; Kemmotsu N; Pierce K; Courchesne E
    Am J Psychiatry; 2003 Oct; 160(10):1847-62. PubMed ID: 14514501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.