These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 12067732)
21. The attack of the phytopathogens and the trumpet solo: Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Mandal SM; Porto WF; Dey P; Maiti MK; Ghosh AK; Franco OL Biochimie; 2013 Oct; 95(10):1939-48. PubMed ID: 23835303 [TBL] [Abstract][Full Text] [Related]
22. Novel antifungal peptides from Ceylon spinach seeds. Wang H; Ng TB Biochem Biophys Res Commun; 2001 Nov; 288(4):765-70. PubMed ID: 11688973 [TBL] [Abstract][Full Text] [Related]
23. Antifungal activity of oosporein from an antagonistic fungus against Phytophthora infestans. Nagaoka T; Nakata K; Kouno K; Ando T Z Naturforsch C J Biosci; 2004; 59(3-4):302-4. PubMed ID: 15241945 [TBL] [Abstract][Full Text] [Related]
24. Cys/Gly-rich proteins with a putative single chitin-binding domain from oat (Avena sativa) seeds. Li SS; Claeson P Phytochemistry; 2003 Jun; 63(3):249-55. PubMed ID: 12737975 [TBL] [Abstract][Full Text] [Related]
25. An antifungal peptide from baby lima bean. Wang HX; Ng TB Appl Microbiol Biotechnol; 2006 Dec; 73(3):576-81. PubMed ID: 16850300 [TBL] [Abstract][Full Text] [Related]
26. Antifungal activity of alkyl gallates against plant pathogenic fungi. Ito S; Nakagawa Y; Yazawa S; Sasaki Y; Yajima S Bioorg Med Chem Lett; 2014 Apr; 24(7):1812-4. PubMed ID: 24618299 [TBL] [Abstract][Full Text] [Related]
27. Isolation of vulgin, a new antifungal polypeptide with mitogenic activity from the pinto bean. Ye XY; Ng TB J Pept Sci; 2003 Feb; 9(2):114-9. PubMed ID: 12630696 [TBL] [Abstract][Full Text] [Related]
28. Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis. Kini SG; Nguyen PQ; Weissbach S; Mallagaray A; Shin J; Yoon HS; Tam JP Biochemistry; 2015 Nov; 54(43):6639-49. PubMed ID: 26467613 [TBL] [Abstract][Full Text] [Related]
29. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. Duvick JP; Rood T; Rao AG; Marshak DR J Biol Chem; 1992 Sep; 267(26):18814-20. PubMed ID: 1527010 [TBL] [Abstract][Full Text] [Related]
30. An antifungal peptide from the coconut. Wang HX; Ng TB Peptides; 2005 Dec; 26(12):2392-6. PubMed ID: 16308082 [TBL] [Abstract][Full Text] [Related]
31. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Zhang B; Xie C; Wei Y; Li J; Yang X Protein Expr Purif; 2015 Mar; 107():43-9. PubMed ID: 25245535 [TBL] [Abstract][Full Text] [Related]
32. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Broekaert WF; Mariën W; Terras FR; De Bolle MF; Proost P; Van Damme J; Dillen L; Claeys M; Rees SB; Vanderleyden J Biochemistry; 1992 May; 31(17):4308-14. PubMed ID: 1567877 [TBL] [Abstract][Full Text] [Related]
33. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). Wang X; Bunkers GJ Biochem Biophys Res Commun; 2000 Dec; 279(2):669-73. PubMed ID: 11118343 [TBL] [Abstract][Full Text] [Related]
34. Isolation and characterization of a 25 kDa antifungal protein from flax seeds. Borgmeyer JR; Smith CE; Huynh QK Biochem Biophys Res Commun; 1992 Aug; 187(1):480-7. PubMed ID: 1520338 [TBL] [Abstract][Full Text] [Related]
35. Isolation and biochemical characterization of an antifungal peptide from Amaranthus hypochondriacus seeds. Rivillas-Acevedo LA; Soriano-García M J Agric Food Chem; 2007 Dec; 55(25):10156-61. PubMed ID: 18031007 [TBL] [Abstract][Full Text] [Related]
36. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Bártová V; Bárta J; Jarošová M Appl Microbiol Biotechnol; 2019 Jul; 103(14):5533-5547. PubMed ID: 31144014 [TBL] [Abstract][Full Text] [Related]
37. An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Zottich U; Da Cunha M; Carvalho AO; Dias GB; Casarin N; Vasconcelos IM; Gomes VM Biochim Biophys Acta; 2013 Jun; 1830(6):3509-16. PubMed ID: 23500079 [TBL] [Abstract][Full Text] [Related]
38. Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. Caruso C; Caporale C; Chilosi G; Vacca F; Bertini L; Magro P; Poerio E; Buonocore V J Protein Chem; 1996 Jan; 15(1):35-44. PubMed ID: 8838588 [TBL] [Abstract][Full Text] [Related]
39. Kunitz-type serine protease inhibitor from potato (Solanum tuberosum L. cv. Jopung). Park Y; Choi BH; Kwak JS; Kang CW; Lim HT; Cheong HS; Hahm KS J Agric Food Chem; 2005 Aug; 53(16):6491-6. PubMed ID: 16076139 [TBL] [Abstract][Full Text] [Related]
40. Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: Insights into the mechanism of action. Ramos MV; de Oliveira RS; Pereira HM; Moreno FB; Lobo MD; Rebelo LM; Brandão-Neto J; de Sousa JS; Monteiro-Moreira AC; Freitas CD; Grangeiro TB Phytochemistry; 2015 Nov; 119():5-18. PubMed ID: 26456062 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]